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Summary 

During the past decade, nearly 200 million people in China have migrated from rural to 
urban areas, making it the largest migration in human history. Rapid urbanization brings 
improvement in the standard of living and opportunities for economic growth along with 
huge environmental and societal challenges. The growing urban population and 
unprecedented increase in vehicle ownership has led to severe traffic congestion and air 
pollution in virtually all major urban areas in China, a common challenge faced by other 
emerging economies such as Brazil and India.   

To address these challenges, central and local governments in China are undertaking 
huge investment in transportation infrastructure. China’s total investment in 
transportation infrastructure in 2014 amounted to nearly 4% of its GDP. Subway systems 
are being developed and expanded in all major cities: China’s 12th national five-year 
plan (2011-2015) outlined 69 new subway lines to be constructed with a total length of 
2,100 kilometer and spending of RMB 800 billion (USD 130 billion). 

What are the social and economic impacts of these rapid and large-scale investments in 
transportation infrastructure?  To what extent can they address traffic congestion and air 
pollution problems? Do the benefits from these investments justify their costs?  
Understanding these questions is important not only for government policies in China but 
for other emerging economies as well.   

In this project, we exploit a variety of data sets and different empirical methods to provide 
the first thorough assessment of the impacts of the rapid expansion of the subway 
system in Beijing, China. This study has resulted in three journal articles, two papers 
published at the Journal of Environmental Economics and Management, the other paper 
published at American Economic Journal: Economic Policy. Another paper is in final 
preparation for submission to an academic journal.  

We find that subway expansions in Beijing significantly improved air quality, reduced 
traffic congestion, and affected travel modes and housing prices. Cost-benefit analysis 
suggests that total benefits from health and time saving alone would exceed the costs of 
subway expansion. Most of the cost from subway expansion needs to be justified from 
traffic congestion relief and other economy-wide impacts, rather than improved air 
quality. Although different transportation policies can achieve the same level of traffic 
congestion reduction, they could have very different impacts on the housing market and 
the spatial pattern of household locations. Both lower-income and higher-income 
households benefit from subway expansion. However, the welfare increase is 
significantly larger for higher-income households than lower-income households.  

Our results are most externally valid in large, dense cities that have sparse subway 
systems in place and are considering expansions. China alone has 160 cities that have a 
population greater than 1 million people. As rapid urbanization in developing countries 
has become a global trend, our study also provides useful policy recommendations for 
other developing countries. This is particularly true for India, where PM2.5 
concentrations are similar to China and traffic congestion in major cities is getting worse. 
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1. Introduction 

During the past decade, nearly 200 million people in China have migrated from rural to 
urban areas, making it the largest migration in human history. Rapid urbanization brings 
improvement in the standard of living and opportunities for economic growth along with 
huge environmental and societal challenges. The growing urban population and 
unprecedented increase in vehicle ownership has led to severe traffic congestion and air 
pollution in virtually all major urban areas in China, a common challenge faced by other 
emerging economies such as Brazil and India.   

The Chinese automobile industry has grown to be by far the largest in the world, with a 
total output of around 29 million units including 24.8 million passenger vehicles, in 2017. 
Private vehicle ownership in China was uncommon before 2000 but the sales of new 
passenger vehicles in China increased dramatically after the turn of the century, growing 
from less than one million units in 2001 to nearly 25 million in 2017 and surpassing the 
U.S. market in 2009. Beijing has led the way in vehicle ownership growth, transitioning 
from a city on bikes to a city in cars during this period: Beijing’s stock of passenger 
vehicles increased from about 1.1 million units in 2001 to nearly six million units in 2018. 
Beijing is now routinely ranked as one of the most congested cities in the world, with the 
average traffic speed during peak travel times often less than 15 miles per hour. 

The Beijing municipal government has been investing heavily in transportation 
infrastructures, such as buses, roads, and subway lines to combat traffic congestion and 
air pollution in the city. From 2007 to 2015, the government’s total investment in 
transportation infrastructure amounted to over 430 billion Yuan (about USD 67 billion). 
During this period, Beijing rolled out 14 new subway lines with a total length of 440 
kilometers. The city’s rapid subway expansion is still ongoing: another 12 subway lines 
with a total length of nearly 378 kilometers are under construction and scheduled to open 
before the end of 2020. Similar large-scale expansion of subway systems is taking place 
in major cities throughout China. 

Despite the massive investment in subway infrastructure in Beijing and other major cities 
in China, rigorous evaluation of the impacts of subway expansion is lacking. What are the 
social and economic impacts of these rapid and large-scale investments in transportation 
infrastructure?  To what extent can they address traffic congestion and air pollution 
problems? Do the benefits from these investments justify their costs?  Understanding 
these questions is important not only for government policies in China but for other 
emerging economies as well.   

This project aims to evaluate the impacts of the rapid expansion of the subway system in 
Beijing, China. Specifically, we explore the following research topics: 

1. Effects of subway expansion on traffic congestion 
2. Effects of subway expansion on local air quality 
3. Effects of subway expansion on residents’ travel modes, housing prices, and welfare 
4. Benefit-cost analysis of subway expansion 

We employ a number of datasets from various sources. For topic 1, we use 
administrative data on daily public transportation ridership and road congestion from 
Beijing Daily Transport Operational Monitoring. For topic 2, we merge the daily air quality 
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measures from 27 air quality monitoring stations and with the map of subway expansion 
from 2008 to 2017. For topic 3, we combine household mortgage transaction data over 
2008-2014 with the 2010 Beijing Household Travel Survey (BHTS) data collected by the 
Beijing Transportation Research Center. 

We have the following main findings. First, road delay time decreases by 15% on average 
across the city of Beijing after opening of one subway line.  Second, an increase in 
subway density by one standard deviation improves air quality by two percent. Third, 
subway expansion from 2008 to 2014 increased consumer surplus by 1,390 yuan (in 
2010) for a below-median-income household and by 5,410 yuan (in 2010) for an above-
median-income household. Fourth, the benefits from health and congestion relief 
accounts for 1.38-4.36 percent and 58-116.41 percent of the total cost, respectively, 
during a 20-year period. Recognizing that subway systems could have a life span of at 
least several decades or over 100 years, our analysis suggests the total benefits from 
health and time saving alone would exceed the costs of subway expansion. 

2. Intervention, Theory of Change and Research Hypotheses 

2.1 Description 

The program we evaluate is the rapid subway expansion in Beijing. Before 2000, Beijing 
had only two subway lines. After winning the bid for hosting the 2008 Olympic Games in 
2001, the Beijing Municipal Government launched the rapid subway expansion program 
in order to serve the large number of tourists and relieve traffic congestion. After the 
Olympic Games, the subway expansion accelerated to address the worsening traffic 
congestion and air pollution as vehicle ownership dramatically increased.  

As shown in the subway expansion timeline (Figure 1), two new lines were opened from 
2002 to 2006 and new lines were opened every year since 2007. From a global 
perspective, Beijing’s rapid development of mass transit since 2007 is unprecedented. 
From 2007 to 2014, the total investment in transportation facilities amounted to over 350 
billion Yuan (about USD 56 billion). During this period, 14 new subway lines and one 
airport expressway were constructed with a total length of 440 kilometer. The rapid 
subway expansion program is still ongoing in Beijing: another 12 subway lines are under 
construction and scheduled to open before the end of 2020 with a total length of nearly 
378 kilometer. Similar large scale and rapid expansion of subway systems are taking 
place in other major cities throughout China. 

Figure 1: Beijing subway expansion timeline 

 
Source: www.bjstats.gov.cn/xwgb/tjgb/ndgb/201402/t20140213_267744.htm. 

http://www.bjstats.gov.cn/xwgb/tjgb/ndgb/201402/t20140213_267744.htm
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2.2 Theory of Change 

As shown in Figure 2, the expansion of the subway network could impact traffic 
congestion and air quality through two main channels. First, the improved subway 
coverage could lead some commuters to switch from traveling using private cars to using 
subways (Mohring, 1972). This traffic diversion effect or “Mohring Effect” should relieve 
traffic congestion and reduce air pollution. Second, the improvement in traffic conditions 
could make driving more attractive and induce additional travel demand using private 
cars, resulting in a traffic creation effect (Vickrey, 1969) . In the long run, this traffic 
creation effect could undo the positive impact realized through the first channel. So the 
net effects of subway expansion on traffic congestion and air quality are unclear and 
should be investigated empirically. Furthermore, the expansion of subway networks could 
induce the shift of travel from one area to another. Drivers may shift to roads close to the 
new subway lines either to utilize the abundant road capacity or to drop passengers at 
the subway station. Therefore, the expansion of the network could affect traffic condition 
and air pollution spatially. Our data allow us to examine the heterogeneity effect across 
space and over time and get a more complete picture of the distributional impacts. 

Figure 2: Theory of Change 

 

Although the net effects of subway expansion on traffic congestion and air quality are 
ambiguous in theory, most existing empirical studies find positive effects of public transit 
systems on these two outcomes. For examples, Chen and Whalley (2012) used the sharp 
discontinuity in ridership on opening day of a new rail metro system in Taipei in 1996 to 
examine the effect of the subway on air quality. They found a significant reduction in 
carbon monoxide though not in ground level ozone. Using a similar RD approach on a 
strike in 2003 by Los Angeles transit workers,  Anderson (2014) found that the average 
highway delay increases by 47 percent when transit service ceases.  
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Based on the theoretical and empirical literature, we hypothesize that 
1. Subway expansion reduces traffic congestion; 
2. Subway expansion improves air quality; 
3. The long run effects of subway expansion on traffic congestion relief and air 

quality improvement are lower than the effects in the short run; 
4. The effects of subway expansion on traffic congestion relief and air quality 

improvement are larger in the areas closer to the new subway lines than the 
effects in the areas farther away from the new subway lines. 

Subway expansion will also affect property values especially for the neighborhoods close 
to the new subway stations, because the nearby residents will benefit from easier subway 
access, relieved traffic congestion, and improved air quality (Baum-Snow and Kahn, 
2000; McMillen and McDonald, 2004; Zheng and Kahn, 2013; Li et al., 2016). Lack of 
property taxation in China allows for housing price to fully capture the capitalization of 
infrastructure projects into property values. A recent study by two of our principal 
investigators and their coauthors examined the impacts of Beijing’s subway expansion 
from 2003 to 2008 on housing prices using property-level panel data (Li et al., 2016) .  
The results suggest capitalization of subway expansion on property values is significant: 
a 1-kilometer reduction in proximity to a subway station increases property values by 15 
percent for properties within 3 kilometers of a subway station, and the effect is 3.4 
percent for properties between 3 and 5 kilometers of a subway station (Li et al., 2016).  

The rapid subway expansion has been paired with several policies intended to 
disincentivize car travel: driving restrictions by day, a lottery to be able to purchase a 
vehicle, and increases in gasoline taxes. We seek in this study to understand how 
subway expansion and various transportation policies affect household location decisions 
and housing prices. Since housing and transportation markets feature endogenous 
prices, we also would like to know how household sorting and commuting decisions affect 
equilibrium housing price and road congestion levels. While the former has been well 
studied in the residential sorting literature, most studies of housing location take 
congestion to be exogenous. We also wish to link these to the effects across Beijing on 
heterogeneous households. 

Relief of traffic congestion due to transit infrastructure reduces travel time, which may 
generate substantial gains in social welfare measured by the value of saved travel time 
(Anderson, 2014). Traffic-related air pollution (measured by concentrations of particulate 
matter, ozone, nitrogen oxides, and carbon monoxide) is associated with increased risk 
for multiple adverse health effects including asthma and allergic diseases, cardiac effects, 
respiratory symptoms, reduced lung function growth, adverse reproductive outcomes, 
premature mortality, and lung cancer (World Health Organization, 2006). Improved air 
quality will thus contribute to improved health conditions, reduced health-related 
spending, and lower mortality. The social benefits of subway expansion can thus be 
imputed based on the value of saved travel time and the dose-response functions that 
characterize the effects of air pollution exposure on health outcomes from the economic 
and epidemiological studies, drawing upon the estimated effects of subway expansion on 
travel congestion and air quality. We will then cross-check the estimated benefits through 
this social welfare approach with the estimate of capitalization of the proximity to subway 
in property values described earlier. 
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3. Evaluation  

3.1 Evaluation questions 

We have three main evaluation questions: 
1. To what extent can subway expansion address the traffic congestion problem?  
2. To what extent can subway expansion address the air pollution problem? 
3. To what extent can subway expansion (in combination with driving restriction and 

congestion tax) affect households’ travel modes, housing prices, and welfare? 

We use secondary datasets from multiple sources to address the research questions. 
Our research does not involve primary data collection and thus the related ethics issues. 
Based on available datasets, we use different methods to address the three evaluation 
questions separately. In next subsections, we describe our data and methods for each of 
the three questions. 

3.2 Data and methods of effects on traffic congestion 

3.2.1 Data  
Our main outcome variable is traffic congestion. We also look at the effect of subway 
opening on the subway and bus ridership to shed lights on the mechanism of the effect 
on traffic congestion. Our empirical analysis leverages daily data on traffic congestion, 
bus ridership and subway ridership during a 120-window around the each of the opening 
dates of six subway lines. These administrative data were obtained from Beijing Daily 
Transport Operation Monitoring, released by the Transport Operation Control Center of 
Beijing. The data period and subway lines are summarized in Online Appendix Table A1.  

To measure congestion, we use TCI, the official standard by which congestion is 
measured in China. The Beijing Municipal Commission of Transport (BMCT) collects 
readings on Beijing’s road speeds through a large fleet of taxis using satellite navigation 
and wireless technology at 15-minute intervals. The BMCT assigns weights to different 
roads and calculates the TCI as a weighted average across Beijing. Online Appendix 
Table A2 illustrates the relationship between the TCI and the time needed for travel. If all 
of Beijing’s roads flow in an unrestricted manner, the TCI is 0, while if all of Beijing’s 
roads are severely congested, the TCI is 10. For TCI values between 2 and 8, a one-unit 
increase in TCI corresponds to an approximately 15% increase in travel time. We have 
three measures of TCI available: total average TCI, morning peak traffic, and evening 
peak traffic. Our data consist of daily measurements of each of these over the period 
January 2009 to May 2015. 

Online Appendix Table A3 reports simple averages of TCIs and key explanatory variables 
for the full sample, and before and after the openings of the subway lines. After new 
subway lines are opened, the traffic congestion index (TCI) decrease by large and 
statistically significant amounts after subways are opened.   

3.2.2 Regression discontinuity approach 
We estimate as our primary specification a discontinuity based ordinary least squares 
model. Our empirical strategy leverages the sharp discontinuities in subway ridership 
when new lines open: 

𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽2𝑋𝑋𝑡𝑡 + 𝛽𝛽3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑋𝑋𝑡𝑡 + 𝛽𝛽4𝑓𝑓(𝑋𝑋𝑡𝑡) + 𝛽𝛽5𝑍𝑍𝑡𝑡 + 𝑆𝑆𝑡𝑡   (1) 
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In equation (1), 𝑌𝑌𝑡𝑡 is traffic congestion, bus ridership, or subway ridership. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 
is a dummy variable indicating whether the new subway lines are open on t. Xt is a 
running variable representing the time trend: the difference in the number of days 
between the subway opening and day t. Before the subway opening, Xt is negative; after 
the opening, Xt is positive. The function f(Xt) is a k-th order polynomial function, used to 
flexibly control for time-series variation in transportation demand that would have 
occurred in the absence of the subway openings. 

We also include 𝑍𝑍𝑡𝑡, a vector of other control variables that may affect transportation. In 
our regressions involving 𝑍𝑍𝑡𝑡, we include four types of additional controls: dummies for the 
day of week, dummies for extreme weather incidence, dummies for which license plates 
are excluded from Beijing roads that day, and dummies for which subway opening is 
being considered. We reason that the first three control variables can impact patterns of 
transportation. The fourth dummy variable controls for any fixed factor affecting 𝑌𝑌𝑡𝑡 which 
differ between openings, such as the larger population and larger economy levels of 
Beijing in later years.  

The variable of interest is 𝛽𝛽1, the local average treatment effect of the subway opening on 
traffic congestion. The size and direction of this effect could vary, depending on how city 
residents respond to new subway lines. If new subway lines attract passengers from 
other modes, subway openings will negatively impact bus traffic and ease congestion. 
However, if new public transportation routes attract new passengers to travel rather than 
stay home, subway openings could have no effect on measures of travel demand. 

The key assumption behind this identification strategy is that the only factor affecting 
travel demand in the vicinity of subway opening dates is the subway opening. Both 
observable and unobservable factors affect transportation smoothly in the neighborhood 
of the subway opening date. Our higher order polynomial function allows us to control for 
changes from all other factors so long as they are continuous. Other work using a similar 
methodology in different settings includes Chen and Whalley (2012) and Davis (2008). 

We implement this approach using daily observations 60 days before and 60 days after 
subway openings. We use the period including 60 days before and after the opening of 
the subway to ensure no overlap between the sample periods of each subway opening. 
Line 6 opened December 30, 2012, and line 14 opened May 5, 2013. 

Our identifying assumption is that, in the absence of subway line openings, demand for 
transportation would have changed continuously at the time of subway opening. This 
assumption is reasonable so long as there are no large shifts in the drivers of 
transportation demand timed with the openings of subway lines. Gradual shifts in 
transportation demand, which do not threaten our identification, happen on a continual 
basis: Beijing’s economy is growing rapidly, its population is increasing, and the fleet of 
vehicles in the city continues to enlarge. The flexible polynomial included in our 
regressions accounts for these continuous changes. 

Only discontinuous shifts timed with the six subway openings pose a threat to our 
identification strategy. A discontinuous shift could occur if subway openings are simultaneous 
with events that produces changes in travel demand. For example, if Beijing government 
officials strategically opened Beijing subway lines to coincide with events that decreased 
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transportation demand, our estimates of 𝛽𝛽1 would be overstated. However, many details 
about this setting suggest that precisely timing subway opening dates is not possible. 

A second concern in our sample is the extent to which Chinese national holidays can 
interfere with our results. Several subway line openings occur just before the major 
holidays of the calendar new year and the lunar new year. We handle this concern by 
dropping all national holidays in our main specifications. In our robustness checks, we 
also drop days around holidays to account for the possibility that low transportation 
demand is observed because some people leave early for vacation or return late from it. 

A third concern is the presence of alternative policies that came into effect during our 
sample period. The most prominent of these policy changes was the January 2011 
implementation of the Beijing vehicle license plate lottery system, which sharply reduced 
the number of new cars on Beijing’s roads. A second potentially important policy change 
was a revision in Beijing’s taxi fares in June 2013. We address this concern by dropping 
the subways openings near these events. 

A fourth concern might be that construction activity associated with opening new subways 
creates congestion. For example, to build street level subway entrances, streets and 
sidewalks must be closed, possibly increasing congestion; this congestion is alleviated 
when the new subway line opens. However, this possibility does not fit with the safety 
regulations of Chinese subways. According to the national standards of subway 
construction in China, all fully constructed subway lines must be tested for safety for three 
months before opening to local residents. Since our primary sample period includes 
congestion levels within only two months of opening, it would not include any street 
closures or construction activities. 

3.3 Data and methods of effects on air quality 

3.3.1 Data 
Online Appendix Table A4 describes the main variables of our analysis and they are 
constructed based on three major datasets. The first dataset contains daily air quality 
readings from all of the 27 monitors in Beijing. Online Appendix Figure A1 shows the 
spatial distribution of the 27 air quality monitors; 11 of these are operated by the central 
government, and the rest are operated by the local government. Geographically, eight 
monitors lie within the 5th ring road, and the rest are outside the 5th ring road. Air 
pollution in Beijing is measured by two different indices: Air Pollution Index (API), 
available from January 1, 2008 to December 31, 2012, and Air Quality Index (AQI), 
available from January 1, 2013 to May 12, 2017. Both indices are measured at the 
monitoring station level on a daily basis. The API is based on three atmospheric 
pollutants, sulfur dioxide (SO2), nitrogen dioxide (NO2), and suspended particulates 
(PM10). In 2013, the Chinese government replaced API with AQI which considers PM2.5 
separately from PM10, and includes ozone (O3) and carbon monoxide (CO) as major 
pollutants. The API or AQI for a given day is calculated based on the level of the 
dominant pollutant during that day and the dominant pollutant is determined by a scoring 
system as shown in Online Appendix Table A5.   

The second dataset records the opening dates and the locations of subway lines. During the 
data period from 2008 to 2016, 13 new subway lines and one airport expressway with 252 
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new subway stations were opened. Online Appendix Figure A1 overlays air quality monitors 
with subway stations in Beijing as of 2016. Most of the subway stations are located in the 
central city. Subway stations on the same line could be opened at different dates. For 
example, some subway stations on Line 8 were opened on the same day as Line 9. Our 
analysis is thus based on ten major opening dates during the sample period (Figure 1). 

The third dataset contains daily weather variables: average temperature, average relative 
humidity, precipitation, and binary variables indicating rain, snow, storm, and fog. It also 
includes hourly wind direction (measured in degrees from 0◦ to 359◦) and speed. Wind 
plays an important role in air pollution because it affects the movements of the fine 
particulates. Since our unit of observation is daily, we need to convert hourly wind speed 
and direction to the daily level. We calculate the daily wind direction and speed based on 
the vector summation of hourly wind direction and speed.  We then categorize the daily 
wind directions into 16 groups. Online Appendix Table A6 presents summary statistics for 
the main daily weather variables and the daily wind directions.   

Online Appendix Table A7 presents the sample averages of ln (Air Pollution) 60 days 
before and after the opening of each new subway line. The top panel shows the simple 
averages, while the bottom panel presents the average residuals after controlling for 
weather conditions and a rich set of time and location fixed effects (including monitor, 
year, season, day of week, and holiday fixed effects, the same set of controls to be used in 
the regression analysis). The treatment group is defined as the monitoring stations within 
2km of a new subway line, while the control group is defined as the monitoring stations 
more than 20km away from the new subway line. The top panel shows a 4 percent 
increase in air pollution level on average after the opening of a subway line. This 
counterintuitive result could be driven by seasonality: nine out of the 14 new lines were 
opened in December and air quality tends to be worse in January and February than in 
November and December due to winter heating. The bottom panel shows that after 
partialling out time and location fixed effects and weather conditions, the opening of a new 
subway line is associated with a 4.6 percent reduction in air pollution level on average 

Online Appendix Figure A2 depicts average residuals of ln(Air Pollution) from 60 days 
before to 60 days after the opening of each new subway line for the treatment group and 
the control group, after partialling out weather conditions and a rich set of time and 
location fixed effects. The treatment group appears to have a higher air pollution level 
than the control group (relative to their baseline levels) one month before the opening of 
the new lines but have a lower level of air pollution about 20 days after the opening. The 
difference between the two groups seems to increase over time after the opening with the 
treatment group exhibiting a lower level of air pollution.  

3.3.2 Subway network density and instrumental variable approach 
The main empirical framework employs subway network density as the key explanatory 
variable and uses the instrumental variable (IV) approach to address endogenous 
subway locations.  The key explanatory variable in this specification is an inverse 
distance- weighted subway density: 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑖𝑖𝑡𝑡 = �
1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖2𝑖𝑖∈𝒩𝒩𝑡𝑡

, 

where i, j, and t index air pollution monitoring stations, subway stations, and days, 
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respectively. Nt is the set of existing subway stations at time t. The subway network density 
for monitoring station i at time t is the weighted number of subway stations at time t, in 
which the weight is the inverse of squared distance from the monitor to a corresponding 
subway station in operation at time t. Following the density measure commonly adopted in 
the urban literature (Ewing and Cervero, 2010), this measure can be considered as the 
number of subway stations per unit area centered around a given monitoring station. The 
density measure increases with the number of subway lines. However, a new subway line 
will change the density measure differently across monitoring stations. The density will 
increase more for the monitoring stations closer to the subway line. 

This subway density measure, however, does not account for the heterogeneity across 
subway stations or subway lines in their contribution to the whole subway system. For 
example, major transfer stations that connect multiple subway lines or subway lines in the 
center of the system play more important roles in the connectivity of the system. To 
capture this heterogeneity, we generate an alternative density measure which takes into 
account the ridership of each subway line for robustness checks.1 The following equation 
shows the ridership-weighted subway density measure (𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆� 𝐷𝐷𝐷𝐷): 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆� 𝑖𝑖𝑡𝑡 = �
𝑊𝑊𝑆𝑆𝐷𝐷𝑊𝑊ℎ𝐷𝐷𝑖𝑖𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖2𝑖𝑖∈𝒩𝒩𝑡𝑡

, 

where Weightj denotes the weight of subway station j on subway line, which equals the 
ridership share of line among all subway lines in operation at time t. 

Online Appendix Table A8 reports the number of new stations at each opening and the 
average standardized density in the vicinity of air quality monitors at each opening. 

We estimate the following equation: 

ln(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡) = 𝛽𝛽1 �
𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑖𝑖𝑡𝑡

𝜎𝜎
�+ 𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝑖𝑖 +  𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 

+𝑊𝑊𝑆𝑆𝑆𝑆𝐷𝐷ℎ𝑆𝑆𝐴𝐴𝑡𝑡𝛽𝛽2 +𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝑖𝑖 × 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑊𝑊𝑡𝑡 
+𝑌𝑌𝑆𝑆𝑆𝑆𝐴𝐴𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑃𝑃𝑆𝑆𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑊𝑊𝑡𝑡 +𝐻𝐻𝑃𝑃𝑃𝑃𝐷𝐷𝑑𝑑𝑆𝑆𝑆𝑆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡         (2) 

The outcome variable, ln(Air P ollutionit), is the logarithm of daily Air Pollution Index (API) 
during 2008-2012 and Air Quality Index (AQI) from 2013 onward. i = 1, . . . , 27 is the 
index for monitoring stations and t ∈ [Jan 1, 2008, Dec 31, 2017] is the index for day. The 
key explanatory variable is the standardized subway network density to facilitate 
interpretation, where Densityit is defined above and σ is the standard deviation of the 
density. W eathert is a vector of weather variables including average temperature (C), 
relative humidity (%), wind speed (m/s), precipitation (mm), dummies for rain, snow, 
storm, and fog, and 16 wind direction dummies. 

We include monitor fixed effects (M onitori) to control for unobserved location attributes 
that affect air quality. We also control for a set of temporal fixed effects including year 
fixed effects (Y eart), season fixed effects (Seasont), day of week fixed effects (DoWt) and 
holiday fixed effects (Holidayt). To control for other confounding factors that may vary 
across time but are not adequately controlled by the time fixed effects, we include a 

                                                
1 The ridership information at the subway station level would be ideal to be used as a weight. 
Unfortunately, we could not find such data set at this point. To proxy the ridership at the station 
level, we use ridership data at the subway line level, treating that each station in a certain subway 
line has the same ridership. 
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monitor-specific time trend, T rendit, to allow the unobserved time trend to vary across 
monitors.2 We also interact monitor fixed effects with driving restriction policy (Drivingt) to 
allow the effects of driving restrictions to vary by locations. Beijing’s driving restriction 
policy bans some vehicles from driving on a given workday depending on the last digit of 
the license plate number. This policy follows a pre-set rotation schedule in terms of which 
pair of numbers (1 and 6, 2 and 7, 3 and 8, 4 and 9, or 5 and 0) is restricted on a given 
day, and it is not adjusted based on traffic conditions. Because the last digits of license 
plates are not evenly distributed and this policy thus changes the traffic conditions on the 
road (Yang, Purevjav and Li, 2019), we construct Drivingt as a vector of five dummies 
indicating the five pairs of the last digits of license plates. εit is the random error term. 

The key identification challenge is the potential endogeneity of the density variable 
resulting from non-random placement of subway stations. City planners may place the 
subway lines and stations in anticipation of the future growth (e.g., population or 
commercial activities) of different parts of the city, which could have implications for the 
traffic congestion level. If the subway lines are more likely to be placed in areas with 
higher anticipated growth of economic activities (hence congestion), the framework using 
the network density as the key explanatory variable may underestimate the impact of 
subway expansion on air quality improvement. 

To address the concern of non-random placement of subway stations, we use the 
historically planned subway network to construct an instrument for the density measure, 
following Baum-Snow (2007), which uses historical highway plans in the U.S. to 
instrument for observed highway routes.3 We obtain historical subway plans in 1957, 
1983, 1999 and 2003. We use the 2003 plan to construct the instrument because it has 
the most lines and because many of the lines appear in earlier plans. The 1957 plan is 
the first known plan and provides the basis for the subsequent plans while the 1983 plan 
defines the “Horizontal+Vertical+Ring” framework of the Beijing subway system, which 
continues to be used. Because we do not observe the planned opening dates from the 
historical plans, we assign the actual opening dates to the planned lines. In order to 
introduce another layer of randomness, we also implement random opening dates within 
a window of the observed opening date as a robustness check.4 

The exogeneity assumption of the IV hinges on the fact that the original subway plan 
were designed to facilitate national defense, with little or no regard for future travel 
demand or air quality. Many of the lines were planned several decades before the 
construction, long before air pollution and traffic congestion became a concern. During 
the first planning period of the subway system about 60 years ago, the population in 
Beijing was less than 3 million, with only 5,000 vehicles. Building a subway system 

                                                
2 Trendit is a vector of monitor-specific linear time trends (the interaction of the dummy for 
monitor  i and the linear time trend t). 
3 We construct the IV following the same density measure as described earlier while just replacing 
actual subway stations with the planned ones? 
4 Following Faber (2014), we construct an alternative IV in the earlier version where we use the 
minimum spanning tree (MST) method to construct hypothetical subway lines with the origin and 
destination given by the historical subway plans. We straighten up all the historical subway lines 
and reallocate the observed subway stations to the nearest location on the hypothetical lines. We 
find similar results using the two different sets of IV. 
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requires huge investments and advanced technologies. The then-premier, Zhou Enlai, 
said, “Beijing is building the subway purely for defense reasons. If it was for transport, 
purchasing 200 buses would solve the problem.”5 

Beijing’s vehicle stock was only 1.5 million in 2003, compared to nearly 6 million by 2018. 
The rapid increase in vehicle ownership after 2003 was unlikely to be predicted by policy 
makers and the historical plan is thus unlikely to be correlated with the spatial pattern of 
traffic congestion and air pollution within the city. The IV is correlated with the density 
measure because the constructed subway lines largely follow the historical plans, which 
contain a similar number of transferring stations and level of connectivity as the current 
subway system. 

The empirical approach based on subway network density relies on the spatial and 
temporal variation of the network expansion. The subway density measure is not a city-
wide measure but is local in nature. A new subway line would increase the density more 
for nearby monitoring stations than for those farther away from the line. The underlying 
assumption is that the impact of subway expansion on air quality is not uniform across 
the city but diminishes over distance. With this assumption, this approach allows for 
system-wide impact or the spatial spillover effect of subway expansion on air quality. 

3.3.3 Difference-in-differences (DID) specification 
As an alternative specification, we use the DID method which assumes the impact of 
subway expansion to be confined locally. This assumption allows us to define treatment 
and control groups. While this assumption may appear to be ad hoc, the advantage of the 
DID approach is that it can be easily adapted to examine the potential heterogeneity in 
impacts (e.g., the dynamic impact over time). 

Our DID strategy compares the air quality 60 days before and 60 days after each of the 
10 opening dates of subway stations between the treatment and the control group. Since 
the subway lines are designed to serve different areas of Beijing, the set of treated and 
control monitors vary across different opening dates. We choose the time windows to be 
60 days before and after the opening dates to avoid the overlap between the pre-opening 
and post-opening periods of two consecutive lines. In DID regressions, we restrict our 
sample to the observations that fall in the 120-day windows around the opening dates. 

We define the treatment group as the monitoring stations within 2km of a subway station 
and the control group the monitoring stations farther than 20km of a subway station. We 
treat the area in between as the buffer zone and drop the monitors in the buffer zone in 
the DID analysis to address the concern of misclassifying treatment status. 

The choice of the treatment group is based on the radius of the impact on commuters’ 
mode of travel to subway stations. The typical length of time that commuters take to 

                                                
5 A quote from the article “The birth of the Beijing subway: Premier Zhou said that the preparation 
of the subway is to prepare for the battle” well explains the situation that China faced back in the 
1950s, “In June 1950, the new China, which was just half a year after the founding of the 
People’s Republic of China, was forced to become involved in the Korean War. At the same time, 
the US Seventh Fleet entered the Taiwan Strait. ... In such an international situation, war 
preparedness should be the first factor to be considered in Beijing’s urban planning.” 
http://discovery.cctv.com/20070926/100879.shtml. 

http://discovery.cctv.com/20070926/100879.shtml
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travel to subway stations is between 5 and 15 minutes. Walking and biking are the two 
most common commuting modes to subway stations in Beijing. The typical walking 
distance is about 1km (or 12 minutes based on a walking speed of 5km/hour) while the 
typical biking distance is about 3km. We choose the average of the two as the radius of 
impact to define the treatment group.6 

As the subway system is a network, the impact of the opening of a new subway station on 
air quality could go beyond 2km. The DID provides estimates of local effects within 2km of 
subway stations, which is different from the estimates of city-wide effects in the density 
specification discussed earlier. The impact is likely to be larger in the areas closer to subway 
stations due to the stronger impact on travel mode choices. Therefore, we expect the 
estimates from the DID to be larger than the estimated impacts from the IV method using the 
density measure, which is confirmed by our empirical findings (to be discussed later).7  

Following a general framework by Bertrand, Duflo and Mullainathan (2004)  and Hansen 
(2007) with multiple groups and time periods, the basic DID framework is specified as 

𝑃𝑃𝑆𝑆(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡) = 𝜃𝜃𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 ×  1(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡) + 𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝑖𝑖  +  𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 
+𝑊𝑊𝑆𝑆𝑆𝑆𝐷𝐷ℎ𝑆𝑆𝐴𝐴𝑡𝑡𝛽𝛽 + 𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝑖𝑖 ×  𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑊𝑊𝑡𝑡 

+ 𝑌𝑌𝑆𝑆𝑆𝑆𝐴𝐴𝑡𝑡  +  𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑃𝑃𝑆𝑆𝑡𝑡  +  𝐷𝐷𝑃𝑃𝑊𝑊𝑡𝑡  +  𝐻𝐻𝑃𝑃𝑃𝑃𝐷𝐷𝑑𝑑𝑆𝑆𝑆𝑆𝑡𝑡  + 𝜀𝜀𝑖𝑖𝑡𝑡 ,                 (3) 
where T reatedit is a treatment indicator that takes the value of 1 if monitor i is within 2km of  
any subway stations that were opened on date τ (τ − 60 ≤ t ≤ τ + 60). 1(Postt) is a dummy 
variable indicating whether an observation is within 60 days after opening of these new  
subway stations, that is, τ ≤ t ≤ τ + 60. The parameter of interest is θ which captures the  
impact of the subway opening on air pollution for areas in the vicinity of the new subway 
stations within 60 days after the opening. Other control variables are defined as in Equation (2). 

The key assumption of the DID is that, in the absence of a new subway opening, air quality 
in the treatment and control groups follow parallel trends. Most monitoring stations in the 
control group are in the suburban districts of the city as shown in Online Appendix Figure 
A1. One may be concerned that those monitors in the control group may be too far away 
from the city center and thus would have different trends from those in the treatment group. 
We take two strategies to address this concern. Our first strategy takes advantage of the 
staggered rollout design of the subway lines. We use the monitors that are located 20km 
farther from the new subway stations but within 2km distance of subway stations either 
opened in the past or to be opened in the future as the control group. Because both the 
treatment and control groups contain only monitoring stations that are close to subway 
stations, the two groups likely share similar (observed and unobserved) characteristics. 
The underlying assumption of this method is the randomness of the opening date. 

                                                
6 The walking and biking distances are approximated based on the Guideline of Designing and 
Planning for Areas along Urban Rail from Ministry of Housing and Urban-Rural Development of 
the People’s Republic of China, and Yang et al., (2018b). We also conduct a spatial lag analysis 
to determine the 2km cut-off for the treated and 20km cut-off for the control groups. The results 
are available upon request. 
7 To the extent that the opening of a subway station could impact the traffic flow of the whole city 
including areas 20km away, the DID approach confounds control with treatment and could 
underestimate the true impact. Indeed, when we define the control group as the monitoring 
stations 15km away from a subway station and shrink the buffer zone accordingly, we find a 
smaller impact, consistent with the intuition above. We choose 20km to reduce the potential bias. 
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Second, we use event study analysis to show the parallel trends hold for pre-opening 
periods in general. We divide the 120-day time window around opening dates into twelve 
10-day intervals (six pre-opening periods n = −5, −4, ..., 0, and six post-opening periods n 
= 1, 2, ..., 6) and run the following regression: 

𝑃𝑃𝑆𝑆(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷)  = �𝛿𝛿𝑛𝑛𝑃𝑃𝑡𝑡(𝑆𝑆) ×
𝑛𝑛≠0

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 +𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝐷𝐷 +  𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 

+𝑊𝑊𝑆𝑆𝑆𝑆𝐷𝐷ℎ𝑆𝑆𝐴𝐴𝐷𝐷𝛽𝛽 +𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝐷𝐷 ×  𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑊𝑊𝐷𝐷 
+ 𝑌𝑌𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷 +  𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷 +  𝐷𝐷𝑃𝑃𝑊𝑊𝐷𝐷 +  𝐻𝐻𝑃𝑃𝑃𝑃𝐷𝐷𝑑𝑑𝑆𝑆𝑆𝑆𝐷𝐷 + 𝜀𝜀𝑖𝑖𝑡𝑡 ,                       (4) 

where Pt(n) = 1 [τ + 10 · (n − 1) ≤ t ≤ τ + 10 · n], indicating interval n. The base interval is 
the 10-day intervals before the opening dates (i.e., n = 0). 

Online Appendix Table A9 presents the coefficient estimates of δn. The results support 
the parallel trends assumption in general: compared with the base interval (10-day 
window before opening dates), the subsequent changes in air quality between the 
treatment and control groups are not significantly different for four out of the five pre-
opening intervals in the specification exploiting staggered rollout design (Column 4). In 
the specification that does not exploit the staggered rollout design (Column 3), three out 
of the five pre-opening intervals show parallel trends, with the base interval and the 
parallel trends assumption only being marginally rejected in one of the remaining two 
intervals. In contrast, we find statistically significant effects of air pollution reduction in 
four out of six post-opening intervals for the same two specifications (Columns 3 and 4). 

One additional identification concern may arise from air pollution induced by subway 
construction, which differs between the treatment and the control group. The construction 
of a subway station involves both underground and ground work, which may generate 
construction dust and worsen the air quality. If the construction leads to higher pollution 
levels close to new subway stations before opening dates, the DID framework could 
mistake the pollution reduction from the mere completion of the construction itself as the 
impact of the subway expansion and hence overestimate the true impact. However, this 
concern is mitigated because under the national standard of subway construction in 
China, every subway line is subject to an intensive trial run over a three-month period 
during which the subway train is tested after the ground work has been finished 
completely.8 Since our DID analysis focuses on the 120-day window around opening 
dates during which the subway construction is already completed, we do not expect 
construction dust to confound our results. 

We estimate two alternative specifications to relax the assumption of uniform effects of 
subway opening across opening dates and stations. First, we allow the impact to vary by 
number of days after the subway opening, as specified in Equation (5). 

𝑃𝑃𝑆𝑆(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷) =  𝜓𝜓1𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 × 1(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷) +  𝜓𝜓2𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 × 1(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷) × 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 
+ 𝜓𝜓3𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 × 1(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷) × 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷2𝐷𝐷 +𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝐷𝐷 +  𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 + 𝑊𝑊𝑆𝑆𝑆𝑆𝐷𝐷ℎ𝑆𝑆𝐴𝐴𝐷𝐷𝛽𝛽 +𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝐷𝐷 

× 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑊𝑊𝐷𝐷 +  𝑌𝑌𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷 +  𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷 +  𝐷𝐷𝑃𝑃𝑊𝑊𝐷𝐷 +  𝐻𝐻𝑃𝑃𝑃𝑃𝐷𝐷𝑑𝑑𝑆𝑆𝑆𝑆𝐷𝐷 + 𝜀𝜀𝐷𝐷𝐷𝐷                  (5)  
here Dayst  is the number of days after the opening of the subway station. This 
specification allows the effect to occur gradually since it may take time for commuters to 
adjust their travel modes. 
                                                
8 The first phase of the trail run process has no passengers on board and during the second phase 
of the process, typically the last 20 days of the process, the subway with passengers (not the 
public) will be tested following the scheduled time and route. 
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In the second specification, we examine the heterogeneity of treatment effects by 
allowing the impact to differ based on the number of new subway stations within the 
vicinity of the treated monitors as in Equation (6). 

𝑃𝑃𝑆𝑆(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷) = 𝜂𝜂𝑁𝑁𝑖𝑖𝑡𝑡 × 𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 × 1(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝐷𝐷 +  𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷 
+𝑊𝑊𝑆𝑆𝑆𝑆𝐷𝐷ℎ𝑆𝑆𝐴𝐴𝐷𝐷𝛽𝛽 + 𝑀𝑀𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝐴𝐴𝐷𝐷 ×𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑊𝑊𝐷𝐷 

+ 𝑌𝑌𝑆𝑆𝑆𝑆𝐴𝐴𝐷𝐷 +  𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷 +  𝐷𝐷𝑃𝑃𝑊𝑊𝐷𝐷 +  𝐻𝐻𝑃𝑃𝑃𝑃𝐷𝐷𝑑𝑑𝑆𝑆𝑆𝑆𝐷𝐷 + 𝜀𝜀𝐷𝐷𝐷𝐷                  (6)  
where Nit is the number of subway stations opened at date τ (τ − 60 ≤ t ≤ τ + 60) within the 
2km distance of the monitor i. This specification captures the notion that when more 
subway stations are located nearby, commuters are more likely to use the subway to reach 
their destinations and hence to reduce driving and air pollution more in the vicinity areas. 

3.4 Data and methods of effects on travel mode, housing prices, and welfare 

3.4.1 Data 
To examine how Beijing households respond to the transportation policies including 
subway expansion, driving restriction, and congestion tax, we construct the detailed 
housing and work commute dataset to study equilibrium sorting behavior. This dataset 
combines household-level mortgage transaction data including complex, unit, borrower 
and co-signer characteristics for 13,865 households purchasing homes in Beijing over 
2008-2014. Critically, this mortgage dataset also includes home and work street 
addresses, which allows us to identify the implied commute to work for a particular home 
location and compare it to that for alternative homes in the household’s choice set. In 
order to understand the relative benefit of any particular commute to work, we then match 
these potential home and work location pairs to choices made by households in a 
separate travel survey conducted in 2010 in Beijing. We begin first by describing this data. 

We utilize the Beijing Household Travel Survey (BHTS) for observations based on data 
collected in September and October 2010 by the Beijing Transportation Research Center 
(BTRC), an agency of the Beijing municipal government. The BTRC has conducted 
annual household travel surveys for many years, and the Beijing municipal government 
uses these surveys to understand Beijing residents’ travel behavior and to inform 
transportation policies. Academic researchers have also used the survey data to analyze 
transportation in Beijing (Wang et al., 2014). 

The BHTS comes from a multistage sampling of households in Beijing in 2010. BTRC 
randomly selects a subset of Traffic Analysis Zones (TAZs) from the 1,911 in the entire city. 
TAZs are geocoded areas about 1.5 square kilometers, on average, although their size 
also depends on the density of trip origins and destinations, which smaller TAZs located 
closer to the center of Beijing reflecting the greater density of employment, housing and 
commercial retail there. The survey covered 46,900 households, 116,142 individuals, and 
253,481 trips. Panel (a) of Online Appendix Figure A3 shows the set of TAZs sampled for 
the 2010 BHTS with the core of urban Beijing and outside of it. We only consider 
households living within the 6th ring road, which corresponds to most of urban Beijing. 

Each record in the travel survey reflects a single home-to-work or work-to-home trip for a 
household using a certain commuting mode or modes and records the TAZ of the origin 
and destination locations. For the purposes of the estimation detailed earlier, we need to 
construct counterfactual trips to understand the characteristics of the trip had it been 
taken using an alternative mode. We use the centroid of the TAZ from the origin and 
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destination of each location and then calculate travel times and distances by submitting 
the corresponding latitude and longitude to Google Maps’ Application Program Interface 
(API) server for processing.  

In principle, there are a large number of possible modes or mode combinations that any 
commuter could travel on between home and work. To focus on modes which we 
observe with regularity in the data and to make the choice modeling tractable, we keep 
only travel survey observations for trips where there is a single mode and it is either 
Driving, Subway, Bus, Walking, or Biking, which is the bulk of all trips in the data.  
Calculating time and distance for the subway using Google Maps is complicated by the 
fact that the API is unable to simulate the transit network as far back in the past as 2010. 
Since the subway network has changed dramatically since then, as discussed earlier, 
and understanding counterfactual travel times and housing choices in the absence of 
these expansions will be the focus of simulations, we use an alternative method to 
calculate subway trip information. First, we assume that households walk to and from the 
nearest subway station on either end of the subway trip. We then use Geographical 
Information System (GIS) cartographic data of the subway network extent for the day the 
trip was taken to estimate the travel distance and time between the stations nearest to 
origin and destination.  

To estimate the model described below, we construct two attributes of each possible trip, 
pecuniary and time costs. The former (0.75 RMB/km) is constructed for driving based on 
the cost of gasoline and average fuel economy in Beijing in 2010. Based on the data 
about fares in the travel survey, the average cost of a subway trip is 2RMB. For bus 
travel, there is a 2RMB base fare, which we then adjust based on expected transfers.9 
Walking and biking are assumed to have zero marginal cost. Time costs are based upon 
the travel time for the trip reported by the Google Maps API. 

Panel A of Online Appendix Table A10 reports summary statistics from the travel survey 
data. We can see that average income is 64,490 RMB, which is almost twice per capita 
income reported by the China Statistical Yearbook for 2010 of 33,360 RMB, which reflects 
the fact that these households are more predominantly in central Beijing, are employed 
and have a fixed dwelling. It is also noteworthy that less than a third of households 
sampled own a car. This is roughly what the overall pattern of car ownership in the city is 
from the statistics from the China Statistical Yearbook. Turning to Online Appendix Figure 
A4, we can see the distribution of mode choice and travel times in Beijing from the survey. 
It is noteworthy that while roughly a third of households own cars, driving only accounts for 
15% among all trips, reflecting that some of the policies discussed above may have 
disincentivized driving and the fact that the car may be used by a different member of the 
household. It is also noteworthy how low the share of subway ridership is (5.3%) and how 
relatively long the trips taken on it are. These long trips may reflect the fact that many of 
these individuals do not have a car and are commuting longer distances for which biking, 
walking or bus are even more time consuming. 

Our second dataset consists of transaction-level data for issued mortgage applicants 
from the largest mortgage provider in Beijing. The underlying dataset includes 72,144 

                                                
9 Transfer costs are 0.2 yuan for students, 0 for elderly people, 0.4 yuan for people with public 
transportation cards, and 1 yuan for people without public transportation cards. 
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mortgage transactions from 1995-2014. The coverage varies from year to year, 
increasing over time. To capture housing demand around the time of Beijing’s subway 
boom and for years where we have sufficient mass of observations, we restrict the 
sample to 13,865 transactions over 2008-2014. The mortgage data includes information 
about household attributes including income, age, marital status, residency status 
(hukou), and critically for our analysis, the address of the household’s work location. We 
also no for each purchased property the transaction price, date the mortgage was signed 
and the street address. We contracted with a Beijing-based company to geocode these 
home and work addresses to a specific latitude and longitude. 

As discussed below, we will need to use predict commuting times and distances for 
households in the mortgage dataset to estimate our sorting model. For computational 
tractability, we construct the choice set of a household in our data based on a random 
sample of 20 homes from the set of all potential houses a household could choose within 
a two-year window around the date we observe their actual home purchase. For each 
household, we construct commuting distances and times for each housing choice 
(potential or actual) to the borrower’s workplace. We do this in the Google Maps API 
based upon regions of Beijing corresponding to the intersection of district boundaries with 
ring roads. There are 25 of these regions as shown in panel (b) of Online Appendix 
Figure A3, although those outside the 6th ring road are not used. Because our data report 
the work location of the principal borrower of the mortgage, when we refer to the 
household’s work location, it is this one, though in principle there may be multiple work 
locations depending upon the labor supply decisions of any particular household. 

To identify mean utility parameters in the estimation described below, it is necessary to 
have sufficient variation in the share of each alternative. Because a single house is only 
chosen by a single household in our data, we need to define housing choices in a more 
aggregate form. Following Tra (2010) and Bayer, Ferreira and McMillan (2007), we 
collapse the mortgage observations into housing types with attributes based on mean 
values of the houses within. A single housing type corresponds to a representative house 
in a given jiedao, roughly a neighborhood, within a two-year window. Online Appendix 
Table A11 reports summary statistics from the mortgage data. We can see that 
household income is even higher reflecting the fact that these households are wealthy 
enough to purchase a house and qualify for a mortgage. The average distance to work is 
10.5km, which is roughly the distance from the center of Beijing to the 3rd ring road, 
although distances can be as big as 53m, which is a little less than the distance to the 6th 
ring road. Distances to subways are about half as far away on average, but can also be 
quite far for households living in outlying areas. 

3.4.2 Empirical framework of a structural estimation  
In this section we lay out the components of a two-stage model to estimate the demand for 
housing based, in part, on the commuting options available to a given household in that 
housing location. We assume that households choose a house based on their preference 
for housing attributes, commuting alternatives, and neighborhood amenities. The 
aggregation of individual choices affects the supply of amenities such as pollution, 
congestion and public education, and controlling for the endogenous formation of these 
amenities has proven important in estimating household sorting models (Bayer and 
Timmins, 2005). The equilibrium sorting model presented here characterizes these 
processes and recovers the underlying housing consumption preferences from choice data. 
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The choice of a housing location based upon commuting patterns is one part of a joint 
decision of work and home location choice. The choice of these locations may be 
simultaneous or sequential, but it is likely that the levels of endogenous amenities will 
affect both choices following Rosen (1979) and Roback (1982). Because for many 
households the choice of work location is likely to be the outcome of a longer-term 
process of labor supply and migration decisions, we take it as given for the purpose of 
our model. Therefore we define our model as a housing location model within which is 
nested the expected value of all potential commuting options at that location. Because we 
do not observe commuting decisions for households in the mortgage data, our approach 
is to estimate preferences for mode choice from the travel survey. Then using these 
estimates, we construct a location- and household-specific measure of the value of 
commuting options for housing locations in the mortgage data. We lay out the framework 
for this two-stage model below. 

Housing demand model. The indirect utility for a household i choosing to live in housing 
type j can be written as: 

max
{𝑖𝑖}

𝑉𝑉𝑖𝑖∈𝐽𝐽𝑖𝑖 = 𝛼𝛼𝑖𝑖 log�𝑆𝑆𝑖𝑖� + 𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖𝐸𝐸𝑉𝑉𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 ,                                         (7) 

where yi is household income, pj is the price of housing type j, Xj is a vector of housing 
type attributes, EVi is expected utility from the possible commuting alternatives, ξj is a 
vector of unobserved attributes, and εi is Type I Extreme Value error. The marginal utility 
for each housing attribute can be separated into an individual-specific component and a 
mean component so that: 𝛼𝛼𝐷𝐷 =  𝛼𝛼�  + 𝓏𝓏𝑖𝑖𝛼𝛼 𝑆𝑆𝑆𝑆𝑑𝑑 𝛽𝛽𝑖𝑖𝑖𝑖 =  �̅�𝛽𝑘𝑘 +  𝓏𝓏𝑖𝑖𝛽𝛽𝑘𝑘, where zi are household 
demographics. Reflecting the fact that the marginal disutility of housing prices is 
dependent upon income, we estimate our model with specifications that replace log (𝑆𝑆𝑖𝑖) 
with log (

𝑝𝑝𝑗𝑗
𝑦𝑦𝑖𝑖

) . In addition, as discussed below, because household i’s commuting decision 

depends on the location of housing type j, the term EVi will vary based upon the work and 
home location of every household-housing type pair. 

Mode choice model. For commuting, which represents derived demand from household 
labor supply decisions (as well as other time allocation decisions such as leisure, house 
work and travel), the most salient characteristics of utility-maximizing households in 
weighing commuting options is their time and financial costs.10 To reflect these costs, we 
consider the choice of mode m (among those available for commuter c in location j: Mc) 
by commuter c living at housing location j as: 

max
{𝑚𝑚∈𝑀𝑀𝑗𝑗

𝑐𝑐}
𝐷𝐷𝑖𝑖𝑚𝑚𝑐𝑐 = 𝜃𝜃𝑖𝑖𝑚𝑚 + 𝛾𝛾1𝐷𝐷𝐷𝐷𝑡𝑡𝑆𝑆𝑖𝑖𝑚𝑚𝑐𝑐 +

𝛾𝛾2𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑚𝑚𝑐𝑐

𝑆𝑆𝑐𝑐
+ 𝜂𝜂𝑚𝑚𝓏𝓏𝑐𝑐 + 𝜀𝜀𝑖𝑖𝑚𝑚𝑐𝑐   

where 𝜃𝜃𝑖𝑖𝑚𝑚 is a mode-specific fixed effect, and 𝜃𝜃𝑖𝑖,𝑤𝑤𝑤𝑤𝑗𝑗𝑤𝑤  normalized to zero. This fixed efect 
incorporates mode-specific amenities, disamenities, scheduling or inconvenience costs that 
do not scale with the time or distance traveled. 𝐷𝐷𝐷𝐷𝑡𝑡𝑆𝑆𝑖𝑖𝑚𝑚𝑐𝑐 is the time of commuting from housing 
type 𝑗𝑗 to work using mode 𝑡𝑡, 𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑚𝑚𝑐𝑐  is the monetary cost for that trip, 𝑆𝑆𝑐𝑐 is the income of 
commuter 𝐷𝐷, and 𝜀𝜀𝑖𝑖𝑚𝑚𝑐𝑐  is Type I Extreme Value error. A convenient property of the functional 

                                                
10 Preferences for particular attributes of commuting modes may matter as well such as the 
enjoyment of driving a car, perceived “greenness” of using public transportation, or health 
benefits of biking or walking. We include mode- specific fixed effects in the model below to 
account for these. 
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form assumed here is that it allows the financial burden to scale with income and it provides 
a straightforward means to calculate the value of time (VOT) as: 𝛾𝛾1

𝛾𝛾2
∙ 𝑆𝑆𝑐𝑐. Estimating this 

model on the travel survey data produces parameter set 𝛩𝛩� = ��𝜃𝜃�𝑖𝑖�𝑖𝑖=1
𝐽𝐽

, 𝛾𝛾1� , 𝛾𝛾1� �, where 𝜃𝜃�𝑖𝑖 =

�𝜃𝜃𝑖𝑖𝑚𝑚�𝑚𝑚=1
𝑀𝑀𝑗𝑗 . We then use these estimates to construct the logsum form of expected utility for 

all commuting alternatives using time, cost and income data for households 𝐷𝐷 from the 
mortgage data based on the home and work locations for a given home choice: 

𝐸𝐸𝑉𝑉𝑖𝑖𝑖𝑖 = log �∑ 𝑆𝑆𝑒𝑒𝑆𝑆 �𝜃𝜃�𝑖𝑖𝑚𝑚 + 𝛾𝛾�1𝐷𝐷𝐷𝐷𝑡𝑡𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖 +
𝛾𝛾�2𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑗𝑗𝑗𝑗

𝑖𝑖

𝑦𝑦𝑖𝑖
+ 𝜂𝜂𝑚𝑚𝓏𝓏𝑖𝑖�𝑚𝑚∈𝑀𝑀𝑗𝑗

𝑖𝑖 �.                         (8) 

While the application of this two-stage approach to residential sorting and commuting is 
new to our knowledge, similar approaches of nesting logsum values from random utility 
models have been executed by Phaneuf, Smith, Palmquist, and Pope (2008) and Capps, 
Dranove, and Satterthwaite (2003). 

Model closing. The identification of the structural parameters of our model relies on our 
demand equations conforming to the closing conditions of an equilibrium model of 
location sorting. These conditions are that 1) The housing market clears: the supply is 
fixed and housing prices adjust to clear the market; 2) Travel times for driving respond to 
travel demand by car via the empirical relationship between speed and flow across roads 
in Beijing;11 3) The level of congestion affects individual mode choices which then affect 
the traffic density on the road, 4) Housing prices and traffic congestion are determined 
endogenously in the model. 

Estimation. To obtain the parameters enumerated in the previous section, we begin by 
estimating the mode choice model via maximum likelihood estimation to recover consumer 
preference for travel time and cost. We then construct the logsum value EVi, ∀ j ∈ Mj to be 
used as an observed housing type attribute (specific to i due to work location) as discussed 
above. We then estimate the location choice model given the following formulation: 

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖(𝜃𝜃2) + 𝛿𝛿𝑖𝑖(𝜃𝜃1) + 𝜀𝜀𝑖𝑖𝑖𝑖                                                   (9) 
𝜇𝜇𝑖𝑖𝑖𝑖 (𝜃𝜃2) = log�𝑆𝑆𝑖𝑖� 𝓏𝓏𝑖𝑖𝛼𝛼 +∑ 𝑋𝑋𝑖𝑖𝑤𝑤𝓏𝓏𝑖𝑖𝛽𝛽𝑤𝑤𝑤𝑤                                       (10) 
𝛿𝛿𝑖𝑖(𝜃𝜃1) = 𝛼𝛼� log�𝑆𝑆𝑖𝑖� + 𝑋𝑋𝑖𝑖�̅�𝛽 + 𝜉𝜉𝑖𝑖 .                                             (11) 

The parameters of the model are estimated in two steps following: first, we estimate 
household-specific parameters (𝜃𝜃2) and alternative specific constants or mean utilities (𝛿𝛿𝑖𝑖) 
using maximum likelihood estimation with a nested contraction mapping by matching 
observed and predicted market shares via the mean utility obtained by inverting shares 
on each iteration 𝑑𝑑: 

𝛿𝛿𝑖𝑖𝑑𝑑+1  =  𝛿𝛿𝑖𝑖𝑑𝑑  +  𝑃𝑃𝑆𝑆 𝑆𝑆𝑖𝑖  −  𝑃𝑃𝑆𝑆 𝐷𝐷𝑖𝑖  (𝛿𝛿𝑖𝑖𝑑𝑑 ; 𝜃𝜃2), 
where 𝑆𝑆𝑖𝑖 are observed market shares for each housing type and 𝐷𝐷𝑖𝑖 are predicted shares 
constructed by calculating: 

𝑃𝑃𝑆𝑆 𝐷𝐷𝑖𝑖  (𝛿𝛿𝑖𝑖𝑑𝑑 ;  𝜃𝜃2)  =  
𝑆𝑆𝑒𝑒𝑆𝑆�𝑉𝑉�𝛿𝛿𝑖𝑖;  𝜃𝜃2��
∑ exp{𝑉𝑉(𝛿𝛿𝑤𝑤;𝜃𝜃2)}𝑤𝑤

   

In the second stage, we estimate mean preference parameters (𝜃𝜃1) in mean utilities via 
OLS and IV. 
                                                
11 We allow travel times to adjust following estimates between travel times and highway density 
for Beijing reported by Yang et al.,(2019)  from a regression of changes in speed on changes in 
the density of vehicles on roads: ∆speed= ε ∆density, ε = −1.1. 
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Identification. A couple of factors could potentially confound our estimation of the 
parameters outlined above, so here we lay out our approach to account for this. First, we 
include house fixed effects (mean utilities), which control for local-specific unobservables 
and common shocks that could affect traffic conditions. Second, as discussed above, 
housing prices and the congestion level are determined simultaneously together with 
individual mode and location choices. Estimation of (11) is therefore confounded by the 
fact that this simultaneity means that 𝐸𝐸�𝜉𝜉𝑖𝑖  𝑆𝑆𝑖𝑖� ≠  0. To account for this, we instrument for 
prices using the average attributes of houses (excluding price and the logsum term) 
between 1-5 kilometers following Berry, Levinsohn, and Pakes (1995). 

4. Findings 

4.1 Impacts on traffic congestion 

Main results. Table 1 reports the average marginal effect of new subway openings on 
traffic congestion in Beijing using equation (1). Each entry in this table represents the 
result of a separate regression, with the dependent variable in the column headings and 
the functional form of the regression in the row headings. The coefficient reported in each 
cell is the estimate of the local average treatment effect of the subway opening. 

In the first panel, we do not include covariates and take a simple average of the six 
subway openings for our results. In the second panel of this table, we include covariates 
that may influence travel patterns: dummies for the day of the week, for extreme weather, 
for which license plates are excluded from Beijing roads, and for the subway opening that 
is under consideration. The magnitude and statistical significance of the coefficients in 
this table are generally stable to the presence or absence of additional covariates. The 
results of these rows give us the unweighted average effect of one of the six subway 
openings in Beijing. 

In the third and fourth panels of Table 1, we weight observations by the average 
passenger volumes of the opening lines. Weighting observations by volume is intuitively 
sensible because we expect the effect of subway openings on transportation patterns to 
be larger if passenger volume on them is higher. The results of these rows give us the 
ridership average partial effect of subway openings in Beijing. Specification 4, with both 
subway line weighting and additional covariates, represents our preferred method of 
estimating the impact of subway openings on bus traffic and vehicle congestion. 

The first two columns give the average effect of new subway openings on total subway 
traffic and on existing subway lines. The estimates suggest that these openings add 
sharply to total traffic, but do not diminish traffic for existing lines. Existing subway lines 
do not appear to change in ridership when new subway lines open. New subway 
openings also appear to draw away riders from buses, as demonstrated in column 3. 

Our estimates of the impact of subway openings on congestion are in columns 4 through 
6 of Table 1. We find that subway line openings have a large and statistically significant 
impact on overall congestion levels in Beijing. Average daily congestion decreased by 
0.728 after subway openings in our preferred specification of panel 4, a large and 
statistically significant decrease from the pre-opening level of 5.408.  
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Table 1: Regression discontinuity-based results of subway effects on traffic 
congestion 

 (1) (2) (3) (4) (5) (6) 
Dependent Variable Ln(All 

SPV) 
Ln(Existin
g SPV) 

Ln(BPV) TCI 
(all) 

TCI 
(morning) 

TCI 
(evening) 

Specification 1: Unweighted estimation 
Subway Open 0.046*** 0.007 -0.033*** -0.687*** -0.750** -0.631** 
 [0.015] [0.012] [0.009] [0.253] [0.297] [0.270] 
R2 0.794 0.879 0.456 0.296 0.221 0.261 
Specification 2: Add covariates      
Subway Open 0.053*** 0.001 -0.037*** -0.652*** -0.796** -0.514** 
 [0.011] [0.014] [0.010] [0.221] [0.298] [0.188] 
R2 0.901 0.904 0.559 0.493 0.512 0.453 
Specification 3: Weight by passenger volume 
Subway Open 0.099*** 0.027 -0.024*** -0.851** -1.139*** -0.571 
 [0.015] [0.015] [0.010] [0.319] [0.358] [0.345] 
R2 0.776 0.910 0.525 0.294 0.280 0.215 
Specification 4: Weight by passenger volume and add covariates 
Subway Open 0.117*** 0.028* -0.023*** -0.728*** -1.120*** -0.343 
 [0.013] [0.016] [0.009] [0.302] [0.362] [0.295] 
R2 0.830 0.927 0.668 0.578 0.562 0.485 
(N = 475) for all 
regressions 

      

Note: This table reports results of regressions of equation (1) when the dependent variable is bus 
passenger volume (BPV), subway passenger volume (SPV), or the traffic congestion index (TCI). 
“All SPV” refers to total subway passenger volume, and “Existing SPV” refers to subway 
passenger volume less that added on the newly opened lines. The reported coefficient in each cell 
is the coefficient on “Subway Open,” a dummy variable indicating whether the new subway line 
had opened. All regressions include a third-order polynomial in the predictor. Holidays and 
weekends are excluded from these models. Regressions with “covariates” contain weekday 
dummies, dummies for which license plates are excluded from Beijing roads that day, extreme 
weather dummies, and dummies for subway line. All standard errors are clustered using a dummy 
for the interaction of the weekday and which license plates are excluded that day. 

Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01. 

In order to translate these TCI levels into travel times, we utilize the translation 
summarized in Online Appendix Table A12. The starting average TCI level of 5.408 
implies that a route that takes one minute without congestion will instead take 1.71 
minutes at this level of traffic. If TCI falls by 0.728, that same trip will take 1.60 minutes, a 
(0.71-0.60)/0.71 = 15% reduction in delays that applies across the entire city of Beijing. 

The point estimate of 0.728 for the decrease in TCI caused by subways has a 95% 
confidence interval of between -0.080 and -1.375. This corresponds to a reduction in 
delays of between 2% and 29%. 

Strictly speaking, this estimate applies only to the discontinuity, and applies only to 
weekdays and non-holidays. When we include weekends in our estimates, we find that 
the standard errors increase so that we cannot conclude statistical significance for the 
effect of subway openings. 
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A 15% reduction in congestion is large, and it is reasonable to ask whether those 
reductions are reasonable relative to the number of new passengers on subways. We 
compare our results to those of a second policy in Beijing: driving restrictions based on 
license plate numbers and find that the 0.728 drop in TCI connected with 254,000 new 
subway passengers is not inconsistent with changes in congestion related to changes in 
the number of license plates bound by vehicle restrictions. 

We also compare our findings to those of Anderson (2014), who uses subway strikes in 
Los Angeles to examine the effect of shutting down the metro system on congestion. The 
LA transit system serviced 200,000 passengers per weekday by rail, and 1.1 million by 
bus. The headline result of Anderson (2014) is that a wholescale shutdown of this system 
increased delays by 47%, a result about 3 times larger than the 15% we found. So 
although Los Angeles and Beijing are very different, our estimate and those of Anderson 
(2014) are not entirely inconsistent. 

Column 5 provides our estimates for morning peak traffic congestion; we find that this 
index decreases by 1.120 in our preferred specification, a very large decrease from the 
4.580 pre-opening level and corresponding to a 24% reduction in delay times. Although 
the point estimates for evening peak congestion suggest that subway openings decrease 
it, the result is not statistically significant in our main specification. Evening peak 
congestion (column 6) is generally much higher than morning peak congestion, and it is 
possible that cars taken off the road during periods of very high congestion are quickly 
replaced when cars are removed by subway openings. 

We next consider graphical evidence on the effect of subway openings on transportation 
patterns in Online Appendix Figure A5. Levels of each transportation behavior variable 
clearly drop after each cutoff, although they are not dramatic relative to the underlying 
variation in the variables. 

Daily bus ridership is basically flat in the 60 days prior to subway openings, but this traffic 
drops in the 60 days following. Although traffic congestion levels are much noisier, they 
also drop perceptibly after subway openings. Morning TCI also shows a large drop, and 
this drop is larger than that for evening TCI.  

These graphs, in general, align well with the findings from our discontinuity regressions, 
providing additional evidence that subway openings have an effect on transportation 
behavior. We test the robustness of our findings using a variety of alternative 
specifications below. 

Expanded sample dates. We limited our sample window to 60 days in our main 
specification because of the dates of openings 4 and 5, which occurred just four months 
apart from each other. We can expand our sample period to an interval of six months 
before and after opening dates by dropping those two lines from consideration. These 
results are reported in Online Appendix Table A12. In this table, we report the results of 
our testing from a variety of sample windows. 

Our estimates of the effect of subway openings on congestion are generally confirmed by 
this alternative specification. Standard errors decrease as the window expands, because 
additional data improve the precision of the estimates. Coefficient magnitudes for 
congestion peak when the sample period is three months on either side of subway 
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openings, and decline only slightly when the sample period is extended up to six months. 
Unlike the results in our 60-day specification, testing with larger sample windows 
suggests that subway openings do reduce evening congestion to a statistically significant 
degree. Generally, this additional evidence is highly supportive of our main findings: 
subway openings result in large decreases in congestion in the short-run. 

Our estimates of the effect on subway traffic suggest that new subways do add to total 
subway traffic, but may also diminish traffic from existing lines. Estimates of the effect on 
bus traffic are less stable, with some estimates statistically indistinguishable from 0 over 
some sample windows. 

Tests of road speed. It would be useful to examine whether our findings on the effects on 
average Beijing congestion were observed in road speeds from individual roads in 
Beijing. We were able to obtain access to average road speed data for 22 roads in Beijing 
during the period September 1, 2014 through March 31, 2015. These data enable us to 
examine whether the openings of lines 7 and 14e, on December 28, 2014, increased 
average road speeds for these roads. We perform this test using equation (1), where the 
dependent variables are the natural logarithm of daily average road speed of a given road 
during morning rush hour and evening rush hour. We add the same covariates as rows 2 
and 4 of Table 1 in our specification, including a third order flexible polynomial. 

We report the results of these regressions in Online Appendix Figure A6. The X-axis of 
this figure is the distance from the midpoint of the road to either subway line 7 or subway 
line 14e, whichever is closer. The top panel of this figure examines the effect of subway 
openings on morning average road speed. The point estimates are consistently positive, 
indicating that average road speeds tended to improve after the subway lines opened. 
The bottom panel of this figure examines the impact of the subway openings on evening 
average road speed. Evening road speed of roads close to the subways tended to 
improve after subways opened, with a decaying effect as the distance between the road 
and the newly opened subway lines increases. 

These results are basically supportive of our main findings. Morning road speeds overall 
do tend to increase, suggesting that the average decreases in TCI we found earlier are 
reflected at the individual road level. For evening traffic, increases in road speed are 
larger close to subways, but decay in roads farther away. This heterogeneity helps 
explain why the point estimates of the effect of subway openings are negative but are 
statistically indistinguishable from zero in some specifications. 

Alternative specifications. We test the robustness of our results from our regression 
discontinuity specification. Our first concern involves the timing of subway openings: many 
openings coincide with holidays such as the calendar New Year. Although we drop holidays 
from our regressions, it is possible that travel around holidays is lower, because travelers 
leave Beijing early or end vacations late. We drop all observations within three days of a 
holiday, reasoning that the impact of most early departures or late returns is likely to occur 
within three days of holidays. We report our results in the first panel of Online Appendix Table 
A13, using specification 4 from Table 1. Dropping surrounding days appears to have limited 
effect on the basic narrative, with subway openings still playing a strong role substituting for 
bus traffic and lowering average congestion and morning peak congestion. 
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Related to this concern, we address the possibility that seasonality in passenger volumes 
explain our results. We create four placebo comparison periods using other portions of daily 
travel behavior data available between 2009 and 2014. In each of these comparison periods, 
the dates match those of one of the six sample periods, but they occur in years where no 
subway opening occurred. We include graphs summarizing these results in Online Appendix 
Figure A7. There is no discontinuity observed in the number of subway passengers, the bus 
passenger volume, or in any of our three measures of congestion. This placebo test supports 
the idea that subway openings rather than seasonality drive our RDD results. 

We also address the possibility that other travel policies enacted in Beijing explain our 
results. For example, the Beijing license plate lottery began to curb the number of new 
cars, starting on January 1, 2011. In addition, a major adjustment of taxi fares occurred in 
June 2013. In this check, we remove subway openings 2 and 5 and re-estimate the 
model. Our results are reported in panel 2 of Online Appendix able A13. Again, the 
pattern of results is very similar. 

We address the possibility that any single subway opening explains our results. We 
remove each subway opening in turn in panels 3 through 8 of Online Appendix Table 
A13. The results are very similar, with decreases in congestion observed in every 
specification. The point estimate of the effect on evening peak traffic is negative in every 
specification, but not statistically significant. 

We address the possibility that our results capture seasonality in travel behavior. This is 
of particular possible concern because government officials may want to take advantage 
of seasonal dips in transportation volume in order to artificially inflate the efficaciousness 
of subways on congestion. We augment our regression with weekly fixed effects. The 
benefit of this is allowing us to examine within-week variation due to subway openings, 
removing some seasonality from the data. The cost of this is that two of the six subway 
openings do not overlap weeks with the other four; as a result, we de-seasonalize only 
four of the six openings. 

We report results in the last row of Online Appendix Table A13. This specification largely 
confirms qualitatively our prior results: subway openings result in decreases in bus traffic 
and overall congestion. For many of the dependent variables, this specification actually 
increases the point estimate of the effect. 

We next address the robustness of our main specification. Our main specification used 
60 days on either side of new subway openings as the window; we vary this period to see 
whether smaller sample windows will affect our results. We first limit the sample to 30 
days, then 45 days, and 60 days, and report our results in Online Appendix Table A14. 

The direction and general magnitude of our coefficients remains essentially intact as the 
sample window changes. The exception is bus traffic, which has an estimate statistically 
indistinguishable from zero when the sample window is 45 days. Standard errors expand 
as the sample shrinks because lower amounts of data adversely affect the precision of 
the estimates. 

We also examine whether alternative polynomial forms affect our results in Online 
Appendix Table A15. Our main specification relies on third-order polynomials, so we 
compare our results with other orders of polynomials. Qualitatively speaking, our main 
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results hold true with each order of polynomial. Overall congestion and morning 
congestion drop significantly, while evening congestion is indeterminate. 

4.2 Impacts on air quality 

In this section, we first present the estimated impacts of subway expansion on air quality 
using the IV method and the DID method in the first two subsections. We then present 
the results from a benefit-cost analysis based on back-of-the-envelope calculations. 

4.2.1 Estimates based on network density 
Online Appendix Table A16 shows the OLS results and Table 2 shows the IV results, 
both using the continuous density measure shown in Equation (2). The key variable is the 
standardized subway network density. We sequentially add weather variables, wind 
conditions, a rich set of location and time fixed effects, and the driving restriction policy as 
control variables. We look at the OLS results presented in Online Appendix Table 16 first. 
Column (1) does not have monitoring station fixed effects, and the result shows a positive 
correlation between subway density and the level of air pollution. This result is likely 
driven by the fact that the city center, where the subway network is denser, tends to have 
higher pollution levels. Once monitor fixed effects are included, the results show that 
higher subway density is associated with a lower level of air pollution. This negative 
relationship is robust across columns (2) to (4). Column (3) adds monitor fixed effects 
interacting with the driving restriction policy, while column (4) further includes a monitor-
specific time trend. Adding the monitor-specific time trend helps to alleviate the concern 
about the endogenous location of subway lines. Subway lines may tend to be placed in 
areas with faster projected growth in economic activities (and hence more air pollution); 
without controlling for this, the impact of subway expansion on air quality would be 
underestimated, as confirmed by the results in columns (3) and (4).12  

The results from the full model (column (4) of Online Appendix Table A16) suggest that a one 
standard-deviation increase in subway density reduces the air pollution level by 1.5 percent. 
This estimation exploits the variation in network density and air pollution across space and 
locations. It can be interpreted as the longer-term impact, when we compare it with estimates 
from the DID framework presented in the next section or from the literature, which typically 
relies on a shorter time window around the intervention to address confounding factors. 

The weather variables have intuitive signs: high temperature and humidity are associated 
with a higher level of air pollution while rainfall/snow and wind are associated with a lower 
level of air pollution. High temperature can lead to faster formation of ground-level ozone 
and fine particulate matter while high humidity (without precipitation) makes it difficult for 
the natural air current to dissipate the pollutants. Precipitation in the form of rainfall or 
snow, as well as high wind, can help pollutants dissipate more quickly. 

We address the potential endogeneity of network density measure using IV in Table 2. 
Column (1) is identical to column (4) in Online Appendix Table A16 to facilitate 
comparison. Column (2) instruments for the density variable with a hypothetical density 
measure based on the 2003 subway planning map and uses the actual opening date of 
                                                
12 We have also tried two alternate monitor-specific time trends: time squared and time cubed. The 
OLS results are robust to the order of the time trend, we find similar estimates with monitor-
specific squared time trend and monitor-specific cubed time trend. 
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each line. The impact from two stage least square (2SLS) is slightly larger in magnitude 
than that from OLS. Column (3) uses a random opening date during a six-month window 
around the observed opening date to construct the IV. This helps to address the concern 
that policymakers may choose the opening date partly based on the projected pollution 
level. In practice, the opening of a new subway is often celebrated with a ceremony at 
which high-level government officials from both the Beijing municipal government and the 
central government are present. Seven out of the 10 opening dates in our sample fall in 
the last few days of a calendar year. In addition to the coincidence of celebrating a new 
subway line opening together with the beginning of a new year, this choice of dates is 
also likely due to the fact that it is easier to gather high-level government officials during 
the public holidays. 

Online Appendix Table A17 translates the parameter estimates of the IV regression with 
observed opening dates into the impact for each subway line. To estimate average 
subway density in Beijing, we calculate the subway network at the Traffic Administration 
Zone (TAZ) level.13  Online Appendix Figures A8 and A9 map the subway network density 
at the TAZ level at the end of 2007 (the year before our study period), 2009, 2011, 2013, 
and 2016. The subway network, which is denser at the city center, has been expanding 
rapidly with openings of new subway lines. For example, the opening of Line 6 (opened 
on December 30, 2012) increases the population-weighted density by 0.12 overall, which 
in turn leads to a 0.24 percent decrease in air pollution level. In the aggregate, the total 
14 lines built from 2008 to 2016 result in a 1.01 percent decrease in air pollution in 
Beijing. Our estimates of the pollution reduction effect are smaller than that of Gendron-
Carrier et al. (2018), who find a four percent reduction in air pollution after the opening of 
a new subway system. However, the majority of new subway systems considered in 
Gendron-Carrier et al. (2018) were the first subway lines in their corresponding cities, 
which could explain the larger estimated impacts than those in our case. In addition, 
studies using the DID or the regression discontinuity method tend to have larger 
estimates (Chen and Whalley 2012; Zheng et al. 2017), as these estimates may capture 
a shorter term and more local impact than ours. This is consistent with our analysis using 
the DID method below, which shows a larger impact than the estimate based on the 
continuous density measure. 

  

                                                
13 The city of Beijing is divided into 1911 Traffic Administration Zones (TAZs) for the purpose of city 
planning. Each TAZ has similar population size so the average subway density at the TAZ level is 
roughly equivalent to the population-weighted average of the density at the district level. 
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Table 2: IV: The impact of subway expansion of air pollution 

(a) Standardized non-weighted density 
    (1) (2) (3) 
Dependent variable: ln(Air Pollution) OLS IV IV 
     Second Stage 
 
 

 

-0.015*** -0.020*** -0.028*** 

    (0.003) (0.004) (0.009) 
Random Opening Dates  N Y 
     First Stage 
 
 
 

 0.789*** 0.651*** 

     (0.004) (0.012) 
F-stat         48808 3160 
(b) Standardized ridership-weighted density 
    (1) (2) (3) 
Dependent variable: ln(Air Pollution) OLS IV IV 
     Second Stage 
 
 
 

-0.026*** -0.024*** -0.035*** 

    (0.007) (0.005) (0.011) 
Random Opening Dates  N Y 
     First Stage 
 
 
 

 0.655*** 0.520*** 

     (0.004) (0.012) 
F-stat     57069 2605 

Note: The last two column report results from IV regression where the dependent variable is ln(Air 
P ollution) and the key explanatory variable for Panel (a) is the standardized subway network 
density, Densityit/σ. Panel (b) shows results with the key explanatory variable as density measure 
using line ridership as extra weights for the subway stations, D ensityit/σ. Column (2), (3), (5) & (6) 
report the result from IV regressions with different specifications. The instrument is the subway 
network density based on the 2003 subway plan map. Column (2) and (5) use the same opening 
dates for actual subway system and the IV. Column (3) and (6) assign random opening dates for 
lines in 2003 plan as the 3 months before or after the real opening dates. The unit of observation is 
monitor-day. All columns control for the daily weather variables: temperature (C0), relative 
humidity (%), precipitation (mm), wind speed (km/h), sets of dummies for wind direction and the 
interactions with the wind speed , dummies for rain, snow, storm, fog; the time fixed effects: day-
of-week, quarter-of-year, year, holiday-of-sample dummies; spatial fixed effects: dummies for air 
pollution monitoring stations and the interactions with the time trend and driving restriction policy 
dummies. Parentheses contain standard errors clustered at the day level. Significance: *p < 0.1, 
**p < 0.05, and ***p < 0.01. 

4.2.2 Difference-in-differences estimates 
Online Appendix Table A18 presents the results from the basic DID model (Equation (3)). 
The results across columns exhibit similar patterns to those in Online Appendix Table 
A16. With the absence of monitoring station fixed effects in columns (1) to (3) of Online 
Appendix Table A16 air pollution level is positively associated with subway opening. After 
controlling for monitor fixed effects, Columns (4) to (6) provide similar estimates of the 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑖𝑖𝑡𝑡/𝜎𝜎 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑖𝑖𝑡𝑡/𝜎𝜎 (2003 Planning) 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝚤𝚤𝑡𝑡/𝜎𝜎�  (ridership weighted) 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑖𝑖𝑡𝑡/𝜎𝜎 (2003 Planning) 
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effects of subway opening on air pollution based on the DID model.14 The results from 
column (6) suggest that within a 60-day time window after a subway line’s opening, the 
monitors in the vicinity (within 2km) of subway stations exhibit a 7.7 percent reduction in 
air quality compared to the monitors outside the 20km radius. 

The DID specifications produce relatively larger impact estimates compared to those from 
the framework based on continuous density measures, likely for two reasons. First, the 
DID method focuses on a shorter-time window, while the method with density measures 
relies on variation during the whole data period. Thus, the DID estimates should be 
viewed as shorter-term impacts. Second, the DID method estimates the impacts of 
subway expansion on the areas within a 2km radius of new subway lines which are likely 
larger than the city-wide effects estimated by the method with network density measures. 

Online Appendix Table A19 reports regression results using different time windows (from 
10 to 180 days) before and after the opening dates. The estimates are not statistically 
different across 40- to 100-day windows (column 4 to 10). When we increase the window 
to 110 days and longer, however, the average effect seems to fade away. This is 
consistent with the notion that it may take some time for commuters to adjust their travel 
modes in the short term and hence for the impact on air pollution to be materialized. In 
the longer term, reduced traffic congestion could lead to additional driving demand, 
mitigating the initial reduction of air pollution. This dynamic is consistent with traffic 
diversion in the short-term and with induced traffic demand in the longer-term, as 
discussed in the introduction. 

Online Appendix Table A20 shows the effect under a continuous measure of the time 
variables. We interact the treated group indicator with the linear and quadratic term of 
days post-opening, respectively. We also compare the specifications under two different 
time windows (60 days and 120 days). The results from our model specifications with the 
quadratic term of days post-opening (columns 2 and 4) suggest that the effect of subway 
opening on air pollution is non-linear. The subway opening begins to have a negative 
effect on air pollution after approximately 15-20 days; the magnitude of the effect then 
increases at a decreasing rate, with a turning point being around 50-60 days, after which 
the effect diminishes. 

Online Appendix Table A21 presents the DID specification which accounts for the number 
of subway stations in the vicinity of treated monitors. The result shows that one additional 
subway station added to the vicinity of a monitor reduces air pollution by 2 to 4.1 percent, 
depending on model specifications. Compared to the IV method based on the network 
density measure, the DID method yields qualitatively the same results but considerably 
larger point estimates. Take the previous example of Line 6. The opening of Line 6 
improves air quality in Beijing by 0.70 percent (assuming no effects on buffered locations) 
to 6.04 percent (assuming the buffered locations have the same impact as the treated 
locations). This comparison reflects the interplay of the two countervailing forces: the 
traffic division effect of public transit investment (the Mohring effect), and the induced 

                                                
14 In appendix table A18, we cluster the standard errors at the day level.  To address the concern auto-
correlation issue, we use the two-way clustering at the monitor level and day level, as a robustness 
check. The two-way clustered standard errors are larger for all specifications, but the subway effects on 
air polution are still significant at the 5% level for the DID specifications (Columns 4-6).  
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demand effect. The second channel takes longer to occur and dampens the positive 
impact on air quality improvement observed in the short term. Nevertheless, our 
estimates suggest that the first channel is the dominant force in the longer run. 

4.3 Impacts on travel mode, housing prices, and welfare  

We now lay out the first estimates of demand for housing based on commuting availability 
for Beijing. We begin by presenting estimation results for the mode choice model. Based 
on the parameters from that model, we then construct the log sum expected value of 
commuting options based on place of work and home location for households and 
estimate their housing demand. 

4.3.1 Model estimation 
In Online Appendix Table A22, we present estimates from a multinomial logit model of 
mode choice over walking, biking, driving, subway and bus. We include alternative 
specific constants for each mode except walking, and include additional controls from 
columns (1)-(4). Comparing columns (1) to (2)-(4) in panel A, it is clear that the estimates 
change substantially when trip distance is included as a control. Including it makes the 
coefficient for pecuniary cost negative, which is consistent with intuition. Because the 
attractiveness of a particular mode will depend upon the length of the trip, if we do not 
control for this, it may be the case that we are picking up the fact that modes for which 
there is higher cost (driving, but also subway and bus) are going to be more attractive for 
longer trips. Once this is included, he results remain fairly consistent as we add 
respondent (age, sex, education) and household characteristics (size, cars, workers). 

In panel B, we then enumerate the implied value of time by taking the ratio of time and 
cost coefficients from our preferred specification in column (4) of panel A.15 

We now turn to the results of estimating the two-stage residential sorting model described 
earlier which utilize estimates from the mode choice model to construct the logsum 
expected value of commuting options for a household at a given location. Panel A of 
Online Appendix Table A23 reports the first stage estimates of a maximum likelihood 
model using a sampling of 20 available properties (plus the chosen one) to construct the 
choice set. In column (1), we report our preferred estimates, which have a negative sign 
on the housing price as would square with intuition and a postive sign on the logsum, 
suggesting that in locations with better commuting options households are more likely to 
locate there. When we run the same estimation without the logsum, however, we can see 
that the housing price becomes more negative. 

Turning to the second stage, we can see that OLS estimates in columns (1) and (2) seem 
to underestimate the price coefficient relative to the IV model, suggesting that 
unobserved housing attributes may upwardly bias our OLS estimates. The coefficient on 
distance to the city center is consistent with declining pricing gradients moving out from 
the city center. Higher unit sizes have seemed to increase the probability a house is 
chosen, but looking back at panel A, this increases with a buyer’s age, perhaps because 
for households that eventually have a child or family members live with them. 
  
                                                
15 These estimates imply a value of time that is 57% of a worker’s hourly wage, which is in line with 
what much of the transportation literature has found (Small, 2012) 
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4.3.2 Counterfactual simulations 
We now utilize the estimates from our model of household and mode choice to consider 
three policy scenarios that help to understand how the series of transportation policies 
enacted in Beijing have affected households and also benchmark them against a policy 
that would charge a congestion fee to drive on the road. Specifically, we construct 
simulations of three alternatives: household behavior in the absence of Driving Restriction 
Policy (Counterfactual), cordon-style congestion charge within 5th Ring Road and the 
expansion of subway from 2008 to 2014 network. 

Simulation approach. In order to simulate these alternative policy scenarios, we alter the 
inputs to the logsum equation (8) and as a result also for the indirect utility for housing from 
equation (11). We focus on observations in the last year of our sample, 2014. To simulate 
the absence of a driving restriction, we replace the alternative specific constant for driving 
for travel survey respondents inside of the driving restriction area (5th ring road) with those 
outside of it reflecting the fact that driving is now available to them without penalty. To 
simulate the effects of expanding the subway network, we replace the times and distances 
of subway commuting for households based on the same locations from the 2008 subway 
network. Finally, we consider a 50 RMB congestion cordon within the 5th ring road by 
increasing the cost of driving for all households with home or work within this road. 

For the following simulations, we assume “closed city” with no change in population and a 
fixed housing supply consisting of the units in our sample. We also assume that the 
transportation network is fixed apart from the policies described above. The simulation 
algorithm described below begins with an initial observed price vector and road congestion 
vector, which will be endogenously determined by the algorithm on each iteration. 

After setting the policy vector as defined above, the outer loop of the algorithm allows 
households to adjust mode choice in response to the policies described. We then 
reconstruct the logsum based on new travel conditions. Then within an inner loop we 
allow households to choose a new housing location based on this new logsum expected 
value. Based upon the new pattern of demand, we resolve for a new price vector that 
equates housing demand with fixed supply. Given a new pattern of demand we also 
reconstruct the implied driving in Beijing given mode choice from the inner loop. With that 
driving pattern, we adjust driving travel times to reflect congestion for driving separately 
between district-ring road regions. Because transportation policies do not just affect 
households buying a house (a fraction of all residents), but all commuters, we 
approximate district-ring road populations and use mode choice probabilities to predict 
mode switching for these households to construct a new aggregate travel demand pattern 
for driving 𝐷𝐷𝑖𝑖.16 

                                                
16 Let 𝐴𝐴 be the work district-ring road region for a household, then the total number of drivers 
traveling from home district-ring road  𝑗𝑗  is 𝐷𝐷𝑖𝑖𝑗𝑗  = �̂�𝑑𝑖𝑖𝑗𝑗 + 𝑃𝑃𝐴𝐴[𝑡𝑡𝑃𝑃𝑑𝑑𝑆𝑆𝑖𝑖 = 𝑑𝑑𝐴𝐴𝐷𝐷𝐷𝐷𝑆𝑆]𝑖𝑖𝑗𝑗 · 𝑑𝑑𝑖𝑖𝑗𝑗𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑗𝑗 , where �̂�𝑑𝑖𝑖𝑗𝑗 is 
the predicted drivers buying homes and commuting from 𝑗𝑗 to 𝐴𝐴, and 𝑑𝑑𝑖𝑖𝑗𝑗𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑗𝑗  are non-homebuyers. 

We calculate the later as 𝑑𝑑𝑖𝑖𝑗𝑗𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑗𝑗 =
𝑑𝑑𝑗𝑗𝑗𝑗
𝑡𝑡𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡

𝑑𝑑𝑗𝑗
𝑡𝑡𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑑𝑑𝑖𝑖

𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝐵𝐵0, which applies the share of households in 

the travel survey traveling to 𝐴𝐴 from 𝑗𝑗 to the population that lives in region 𝑗𝑗. We approximate the 
latter by overlaying population estimates by 𝑗𝑗𝐷𝐷𝑆𝑆𝑑𝑑𝑆𝑆𝑃𝑃 (neighborhood) and overlaying this on district-
ring road regions. 
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Finally, based on the new driving demand pattern 𝐷𝐷𝑖𝑖𝑗𝑗, we then allow driving travel times 
to respond to the new traffic pattern. Using a speed-density response of -1.1 estimated in 
Li, Purevjav and Yang (2019), we adjust the implied travel speed and therefore time 
based upon the number of drivers traveling between district-ring roads regions 𝐷𝐷𝑖𝑖𝑗𝑗. We 
then repeat the inner loop until convergence and then repeat the outer loop until 
convergence. 

Simulation results. Online Appendix Table A24 reports the results for simulating the three 
policy scenarios outlined above while only allowing mode choice (and congestion) to 
change but not household location. Column (1) reports changes in mode shares and 
speed for households above and below the median sample income for the counterfactual 
scenario where there is no driving restriction, no congestion change and no subway 
expansion. By adding the driving restriction, it is clear that driving becomes less popular, 
more so above median income households (having a higher share of car ownership), and 
speeds raise by roughly 2 kph. The congestion charge also decreases driving, but by less 
for the Above group as many will still drive but pay the congestion charge. Finally subway 
expansion disincentivizes driving, increases subway use and decreases the use of some 
other modes. The effect on speeds is much smaller. 

We can compare this with simulations for the same policy scenarios, but where we allow 
households to also move location. In this case, as shown in Online Appendix Table A25, 
we can see that under the driving restriction, there is a larger response to the driving 
restriction, in part because households can move to locations where their ability to not 
drive is greater, which is consistent with Above households moving closer to the subway 
and to work. Responses to the congestion charge are also larger for driving, and we can 
see that this has the effect of allowing Above households to live farther from work and the 
subway, which may reflect the combination of a desire to live closer to other amenities, 
consume more housing and pay the toll to drive a slightly longer distance. The subway 
expansion in column (4) has the effect of dramatically decreasing the distance to the 
subway for Above households, but not for Below, suggesting sorting as the former 
displaces the latter in locations around subways. 

In Online Appendix Figure A10, we plot price gradients from both sets of simulations with 
distance from the nearest subway. In panel (a), we compare simulations with the 2008 
subway network relative to those with the 2014 network. The fact that the former is 
steeper suggests a greater premium associated with proximity to the network, which may 
reflect the fact that on average households are closer to a subway under the 2014 
network, so the premium would be lower. In panel (b), we compare price gradients under 
the driving restriction and the congestion charge which prove to be much steeper, 
reflecting higher demand for proximity to a subway station when driving is relatively 
costly. 

Finally, we report in Table 3 welfare estimates that compare the welfare effects of each 
policy relative to the no policy baseline allowing for just travel mode and also travel mode 
and housing sorting. The no policy baseline describes the scenario of no driving 
restriction, no congestion charge, and with subway network observed in 2008. Welfare 
estimates are based on consumer surplus and do not include revenue recycling or reflect 
direct costs of enforcing the driving restriction, implementing the congestion charge or 
paying for subway expansion.  
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Apart from subway expansion, all of the policies lower welfare, for the driving restriction 
because households would like to drive if they could and for the congestion charge 
because they do not receive the revenues back. Costs are larger to high income 
households likely because these are the households that are likely to drive without the 
policy. For both the driving restriction and the subway expansion, allowing housing 
location sorting to occur increases welfare because households are able to better adjust 
to lower costs of commuting and benefits of location. The exception to this seems to be 
for low income households under the congestion charge, which may reflect effects on the 
cost of housing.  In future work, we plan to add the constraint of balanced budget for the 
government (through revenue recycling in the congestion charge case, and tax in the 
subway expansion case) in the welfare calculation. In addition, we would like to introduce 
a constraint on the impact of congestion relief (e.g., different policies reach the same 
level of congestion) and compare the welfare impacts of these policies on the basis of 
achieving same congestion relief.   

Table 3: Simulation results: welfare effects 

∆ Consumer Surplus 
in 1,000s 2010 RMB 

(1) (2) (3) 
Driving Restriction Congestion Charge Subway expansion 
Household Income Relative to Median 
Below Above Below Above Below Above 

Travel Mode Only -2.81 -14.12 -3.33 -12.95 1.08 3.21 
Travel Mode & 
Location -2.68 -11.54 -3.56 -10.81 1.39 5.41 

 

5. Benefit-cost analysis  

This section presents a back-of-the-envelope analysis on the benefit of subway 
expansion through two channels. The first benefit is on human health including both 
mortality and morbidity from improved air quality. The second benefit comes from 
congestion relief and the value of saved travel time for commuters. 

Our empirical analysis finds that subway expansion leads to statistically significant 
improvement in air quality. Online Appendix Table A17 shows the estimated air quality 
improvement due to each subway line based on the benchmark specification (based on 
the IV results in Table 2). The population weighted air quality improvement ranges from 
0.02 percent by Line 16 opened on December 31, 2016 to 0.24 percent by Line 6 opened 
on December 30, 2012. Recent literature from both epidemiology and economics has 
shown that the long-term exposure to airborne particulates can lead to elevated mortality 
especially among infants and morbidity due to cardiorespiratory diseases (Chay and 
Greenstone, 2003; Currie and Neidell, 2005; Currie and Walker, 2011; Greenstone and 
Hanna, 2014; He, Fan and Zhou, 2016; Knittel, Miller and Sanders, 2016; Ebenstein et 
al., 2017)  

To calculate the mortality impact of subway expansion, we take the estimates from 
Ebenstein et al. (2017)  that study the impact of long-term exposure to airborne 
particulate matter on mortality using a regression discontinuity design. They find that a 
10-µg/m3 increase in PM10 increases cardiorespiratory mortality by 8 percent; this 
impact varies across age cohorts but not across gender. Following the analysis in 
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Barwick et al., (2018) to monetize the mortality impact, the mortality cost amounts to 
$13.38 billion across the Chinese population from a 10-µg/m3 increase in PM10, or $64.9 
per household in Beijing when adjusted for the Beijing per capital income (in 2015 
dollars). The morbidity cost of air pollution comes from Barwick et al., (2018), who provide 
the first comprehensive analysis of the morbidity cost in China based on the universe of 
credit and debit card spending. They find that the morbidity cost from a 10-µg/m3 
increase in PM2.5 is $20.2 (in 2015 dollars) per household for China.   

The congestion relief benefit comes from the value of the saved commuting time. We 
estimate that each new subway line reduces travel delay by an average of 15 percent 
based on the subway lines that opened between 2009 to 2015. The Beijing Annual 
Transportation Report shows that the average traffic delay time is around 20 minutes per 
hour. We assume that these delays occur during the peak hours (7am-9am and 5pm-
7pm) on the weekdays and that approximately two million commuters (who travel by cars 
and buses) are affected. The value of time (VOT) for automobile travel is often assumed 
to be half of the market wage (Parry and Small, 2009), which is 62.98 Yuan per hour 
($9.5 per hour) based on the monthly wage of 10,077 Yuan. 

Panel (a) of Table 4 presents the benefit-cost calculations during a 10-year period after 
the opening of each subway line. The cost includes both the upfront construction cost and 
the operating cost (Column 1). We discount the operating cost and the benefit at a 5 
percent annual discount rate. The total cost from all the subway lines during the sample 
period is $56.3 billion (with the construction cost being $46.7 billion). The health benefit 
amounts to $0.64 billion (Column 2), or 1.13 percent of the total cost (Column 4), while 
the benefit from congestion relief is $26.9 billion (Column 6), or 48 percent of the total 
cost (Column 8). Panel (b) of Table 4 presents the cost-benefit calculations during a 20-
year period where the benefit from health and congestion relief accounts for 1.38 percent 
and 58 percent of the total cost, respectively. The analysis suggests that the health 
benefit from improved air quality is a relatively small portion compared to the overall 
benefit of subway expansion. However, our benefit estimates in Columns (2), (4), (6), and 
(8), are conservative for three reasons. First, the mortality benefit is based on the Value 
of a Statistical Life (VSL) of $2.27 million (in 2015) from (Ashenfelter and Greenstone, 
2004), rather than the central estimate of $8.7 million figure recommended by the U.S. 
EPA. Second, the value of time is assumed to be 50 percent of the wage, rather than 100 
percent of the hourly wage (Small, 2012; Wolff, 2014). Third, the benefit calculation 
includes neither the benefit from improved commute reliability nor the benefit from a 
larger choice set of travel modes (Small, Winston and Yan, 2005).  

We then calculate an upper bound of the health benefit and congestion relief benefits in 
10-year and 20-year respectively, presented in Columns (3), (5), (7), and (9). These 
estimates are based on the VSL of $8.7 million from the U.S. EPA and the VOT of 100 
percent of hourly wage in Beijing. At the upper bound, the health benefit amounts to 
$2.01 billion or 3.57 percent of the total cost while the benefit from congestion relief is 
$53.71 billion or 95.34 percent of the total cost during a 10-year period. During a 20-year 
period, the upper bound of benefits from health and congestion relief accounts for 4.36 
percent and 116.41 percent of the total cost respectively. Together, the total benefits from 
health and time saving alone exceed the costs during a 20-year timeframe, recognizing 
that subway systems could have a life span of at least several decades or over 100 
years.   
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Table 4: Benefit-cost analysis of subway expansion 

Opening Total Cost Health Benefit  Congestion Benefit 
Date Billion $  Billion $  % of Cost  Billion $  % of Cost 
  lower 

VSL=2.3 
upper 
VSL=8.7 

 lower 
VSL=2.3 

upper 
VSL=8.7 

 lower 
VOT=0.5 

upper 
VOT=1.0 

 lower 
VOT=0.5 

upper 
VOT=1.0 

 (1) (2) (3)  (4) (5)  (6) (7)  (8) (9) 
(a) 10 Years of Operation 
Jul 19, 2008 5.69 0.08 0.26 1.45 4.58 2.69 5.37 47.28 94.46 
Sep 28, 2009 3.61 0.06 0.20 1.79 5.65 2.69 5.37 74.52 148.66 
Sep 30, 2010 7.05 0.08 0.25 1.14 3.61 2.69 5.37 38.16 76.23 
Sep 31, 2011 5.19 0.03 0.10 0.60 1.90 2.69 5.37 51.83 103.56 
Sep 30, 2012 10.37 0.13 0.42 1.28 4.04 2.69 5.37 25.94 51.80 
May 5, 2013 3.15 0.03 0.08 0.84 2.66 2.69 5.37 85.40 170.51 
Sep 28, 2013 1.96 0.02 0.05 0.77 2.43 2.69 5.37 137.24 274.73 
Sep 28, 2014 11.58 0.15 0.47 1.28 4.04 2.69 5.37 23.23 46.39 
Sep 26, 2015 2.94 0.04 0.14 1.49 4.70 2.69 5.37 91.50 182.43 
Sep 31, 2016 4.81 0.01 0.04 0.26 0.81 2.69 5.37 55.93 111.73 
Total 56.34 0.64 2.01 1.13 3.57 26.90 53.70 63.10 95.34 
(b) 20 Years of Operation 
Jul 19, 2008 6.21 0.13 0.40 2.05 6.47 4.15 8.29 66.83 133.50 
Sep 28, 2009 4.14 0.10 0.32 2.41 7.62 4.15 8.29 100.24 200.39 
Dec 30, 2010 7.57 0.12 0.39 1.64 5.18 4.15 8.29 54.82 109.51 
Dec 31, 2011 5.71 0.05 0.15 0.84 2.67 4.15 8.29 72.68 145.18 
Dec 30, 2012 10.89 0.20 0.65 1.88 5.94 4.15 8.29 38.11 76.10 
May 5, 2013 3.67 0.04 0.13 1.11 3.52 4.15 8.29 113.08 225.65 
Dec 28, 2013 2.48 0.02 0.07 0.94 2.96 4.15 8.29 167.34 334.42 
Dec 28, 2014 12.10 0.23 0.72 1.89 5.96 4.15 8.29 34.30 68.51 
Dec 26, 2015 3.47 0.07 0.21 1.95 6.16 4.15 8.29 119.60 239.04 
Dec 31, 2016 5.33 0.02 0.06 0.36 1.13 4.15 8.29 77.86 155.51 
Total 71.22 0.98 3.11 1.38 4.36 41.50 82.90 84.49 116.41 
Note: All the monetary terms are in 2015 dollars and discounted by an annual discount rate of 5%. 
The total cost includes both the construction cost and the operating cost. The construction cost 
accounts for 82.9% of the total cost during a 10-year period for the lines in the sample period and 
65.6% for the period of 20 years. The health benefit includes the saving from mortality and 
morbidity costs. The lower bound health benefit calculations are based on the Value of a Statistical 
Life (VSL) of $2.3 million (in 2015) as in Ashenfelter and Greenstone (2004). The upper bound 
health benefits are based on the central estimate of $8.7 million as recommended by U.S. EPA. 
The savings from congestion relief is calculated based on the reduced time delay by subway 
opening using estimates from Yang et al., (2018a). The lower bound of congestion cost saving 
assumes the value of time (VOT) to be 50% of the wage, and the upper bound assumes 100% of 
wage as the VOT. 
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6. Conclusions and recommendations 

Employing big data from a variety of sources and different empirical methods, we 
examine in this study the effects of rapid subway expansion in Beijing on traffic 
congestion, air quality, travel modes, housing prices, and welfare.  We also analyze the 
cost effectiveness of subway expansion. 

Using a sharp time-series regression discontinuity (RD), we investigate how six subway 
openings in Beijing affect vehicle congestion. We find that reductions in congestion 
improve TCI by 0.728, reducing average daily driving delays by 15% across the six 
openings. This result is robust across a broad set of specifications and potential 
alternative explanations. We also find that subway openings play an important role in 
reducing morning rush hour traffic. 

To estimate the effects of subway expansion on air quality, we leverage fine-scale air 
quality data and the rapid build-out of 14 new subway lines and 252 stations in Beijing 
from 2008 to 2016. Our main empirical framework examines how the density of the 
subway network affects air quality across different locations in the city during this period. 
To address the potential endogenous location of subway stations, we construct an 
instrument based on historical subway planning, long before air pollution and traffic 
congestion were of concern. Our analysis shows that an increase in subway density by 
one standard deviation improves air quality by two percent and the result is robust to a 
variety of alternative specifications including the distance-based difference- in-
differences method.  

To examine the effects of subway expansion (in combination with other transportation 
policies) on travel mode, housing prices and welfare, we develop and estimate a 
residential location sorting model to examine the interactions of transportation policies 
and household sorting. The sorting model incorporate commuting decisions and 
generates equilibrium predictions of household locations under different transportation 
policies. We estimate the model parameters using a large household travel survey and 
rich housing transaction data in Beijing. We then use the estimates from this model to 
simulate a series of counterfactual policies to assess the effects of Beijing’s vehicle 
restriction policy and public transportation expansion. The analysis illustrates the 
importance of incorporating travel mode choices in household location decisions and the 
importance of understanding sorting behavior in designing effective transportation 
policies. We also demonstrate how equilibrium sorting can result in lower income 
households being pushed farther away from public transit, lowering their welfare. 

We conduct a back-of-the-envelope analysis on the benefit of subway expansion through 
two channels. The first benefit is on human health including both mortality and morbidity 
from improved air quality. The second benefit comes from congestion relief and the value 
of saved travel time for commuters. The results suggest that the benefits from health and 
congestion relief accounts for 1.38-4.36 percent and 58-116.41 percent of the total cost, 
respectively, during a 20-year period. We note that the benefit calculation includes 
neither the benefit from improved commute reliability nor the benefit from a larger choice 
set of travel modes (Small et al. 2005). Recognizing that subway systems could have a 
life span of at least several decades or over 100 years, our analysis suggests the total 
benefits from health and time saving alone would exceed the costs of subway expansion.  
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We find that subway expansions in Beijing significantly improved air quality, reduced 
traffic congestion, and affected travel modes and housing prices. Cost-benefit analysis 
suggests that most of the cost from subway expansion needs to be justified from traffic 
congestion relief and other economy-wide impacts, rather than improved air quality. 
Although different transportation policies can achieve the same level of traffic congestion 
reduction, they could have very different impacts on the housing market and the spatial 
pattern of household locations.  

To combat traffic congestion and air pollution, the Beijing municipal government has 
been investing heavily in transportation infrastructure such as buses, roads, and subway 
lines. During 2002 to 2014, the total investment in subway lines amounted to nearly 400 
billion yuan (about USD 65 billion). Despite the huge investment in subway infrastructure 
in Beijing and other major cities in China, rigorous evaluation of the social and economic 
impacts of subway expansion was lacking. Our research fills this void by quantifying the 
extent to which subway expansion works in addressing traffic congestion and air 
pollution problems and investigating whether the benefits of the investments can justify 
their costs. Our research provides important evidence for the central and local 
governments of China to justify the use of public funds in subway infrastructure among 
competing programs and to select cost-effective policies in reducing traffic congestion 
and air pollution. This is also an important first step toward understanding the impacts of 
these infrastructure investments on broad social and economic issues such as economic 
growth, income inequality and social welfare. 

Our results are most externally valid in large, dense cities that have sparse subway 
systems in place and are considering expansions. China alone has 160 cities that have a 
population greater than 1 million people. As rapid urbanization in developing countries 
has become a global trend, our study also provides useful policy recommendations for 
other developing countries. This is particularly true for India, where PM2.5 
concentrations are similar to China and traffic congestion in major cities is getting worse. 

To distill the findings and summarize the policy implications: 
• The benefit of subway expansion on air quality improvement is modest while the 

benefit through congestion is at least one magnitude larger. Most of the cost from 
subway expansion needs to be justified from traffic congestion relief and other 
economy-wide impacts.  

• Transportation policies could have important impacts on the housing market. 
Both driving restriction and congestion pricing increase the price premium of 
properties close to subway, the impact of the subway expansion is opposite. In 
addition, driving restriction and subway expansion pushes low-income 
households further from subway and work location, while road pricing does the 
opposite 

• While different transportation policies can be designed to reach the same level of 
congestion reduction, the impact on urban spatial structure and the distributional 
consequences can be drastically different. Given the important differences in 
policy impacts, it is crucial for policy makers to understand the distributional and 
equilibrium effects of different transportation policies.  

  



36 

Appendix: Figures and tables 

Figure A1: Air quality monitors and subway stations 

Source: www.bjstats.gov.cn/xwgb/tjgb/ndgb/201402/t20140213_267744.htm  

http://www.bjstats.gov.cn/xwgb/tjgb/ndgb/201402/t20140213_267744.htm
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Figure A2: Residualized ln(Air P ollution) for 60 days before and after the opening 

 
Note: Residualized plots of ln(Air P ollution) after controlling for weather conditions, monitor fixed 
effects, time fixed effects: year, season, day of week and holiday, and monitor-specific time 
trends. 
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Figure A3: Transportation regions considered in study of effects on travel mode, 
housing prices, and welfare 

(a) Traffic Analysis Zones in Beijing 

 

(b) District-Ring Road Intersections 

 

Note: Panel (a) of the figure displays the sampling of the 2010 Beijing Household Travel Survey. 
Each of the small polygons corresponds to a Traffic Analysis Zone, where the sampled TAZs are 
located predominantly within the central, more populated parts of Beijing– specifically within the 
6th ring road. Panel (b) shows the regions used to calculate travel times and distances for the 
housing data, which are polygons formed by the intersection of the ring roads with district 
boundaries. The maps are constructed by authors. 
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Figure A4: Trip share, time and cost by mode 

 
Note: This figure shows summary statistics for data from the 2010 Beijing Household Travel 
Survey. The first bar chart displays the share of trips taken by each mode type. The second 
chart shows the average travel time for each travel mode. 

Figure A5: Outcome variables around subway opening dates 

                 Panel A. Bus ridership          Panel B. Average daily TCI 

  
                 Panel C. Morning peak TCI         Panel D. Evening peak TCI 

  
Note: Each dot represents the average of the indicated variable across the five subway openings 
studied here. The trendline in each graph represents a 3rd order polynomial. Shaded areas 
represent 95% confidence intervals for the trendline. Weekends and holidays are dropped before 
taking averages for these graphs.  
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Figure A6: R-D Regressions of roadspeed on subway openings 

Panel A. Morning Roadspeed 

 

Panel B. Evening Roadspeed 

  

Note: Each dot represents the result of regressions of equation (1), where the dependent 
variable is the natural logarithm of average road speed of a road segment during morning rush 
hour or evening rush hour. Covariates in these regressions are the same as in specification 4 
from table 1.4. The standard error of each regression is indicated by the error bar. 
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Figure A7: Outcome variables during placebo comparison periods 

              Panel A. Subway ridership                 Panel B. Bus ridership

  

               Panel C. Average daily TCI                 Panel D. Morning peak TCI 

 

                  Panel E. Evening peak TCI 

 

Note: Each dot represents the average of the indicated variable across the four subway 
openings studied here. The trendline in each graph represents a 3rd order polynomial. Shaded 
areas represent 95% confidence intervals for the trendline. Weekends and holidays are dropped 
before taking averages for these graphs. 
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Figure A8: Subway expansion and network density at the TAZ level 

(a) 2007 (b) 2009 

(c) 2011 (d) 2013 

Note: The maps are constructed by authors. 

Figure A9: Beijing subway network density at the TAZ level as of 2016 

Note: The map is constructed by authors.  
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Figure A10: Simulated price gradients: distance to subway 

(a) No Policy & Subway Expansion                (b) Driving Restriction & Congestion Charge 

 

Note: This figure shows simulated price gradients based on equilibrium prices for which 
predicted demand from the model equate to the supply of houses. The horizontal axis reports 
the distance to the nearest subway station from each house in kilometers. The dashed line is 
based on the 2008 subway network and the solid line is the 2014 subway network. Panel (a) 
reports the effect with only a subway expansion, where we have simulated behavior as if there 
had been no driving restriction. Panel (b) reports simulated prices with the driving restriction and 
congestion charge in place. 

Table A1: Sample subway lines and selection of sample period for effects on 
traffic congestion 

Subway 
Opening 

Subway 
Lines 

Opening 
Date Sample Period Stations Length

(km) 

Cost 
(billions 
of RMB) 

Avg. Daily 
Ridership 
(millions) 

1 Line 4 9/28/2009 7/30/09 – 11/27/09 24 28.2 15.8 0.527 
2 Lines 15, 

CP, DX, 
FS, YZ 

12/30/2010 10/31/10 – 2/28/11 54 122.4 47.2 0.155 

3 Lines 8, 9 12/31/2011 11/1/11 – 2/29/12 13 16.5 19.3 0.105 
4 Line 6 12/30/2012 10/31/12 – 2/28/13 20 30.4 28.0 0.340 
5 Line 14W 5/5/2013 3/6/13 – 7/4/13 7 12.4 3.6 0.041 
6 Lines 7, 

14E 12/28/2014 10/29/14 – 2/26/15 19 23.7 29.4 0.263 

Note: The sample period of the main specification is 60 days before and after the date of the 
opening. 

Table A2: Traffic congestion index (TCI) definitions 

TCI Description Travel Time 
0 - 2 Smooth 1 minute 
2 - 4 Basically smooth 1.3 – 1.5 minutes 
4 - 6 Slightly congested 1.5 – 1.8 minutes 
6 - 8 Moderately congested 1.8 – 2.0 minutes 
8 - 10 Seriously congested >2.1 minutes 

Note: Travel time corresponds to the amount of time to travel a given distance. This time varies, 
depending on the speed of the measured road in uncongested circumstances. 
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Table A3: Summary statistics for effects on traffic congestion 

Variable Full 
Sample 

Before 
Openings 

After 
Openings 

Difference 
 

Includes Holidays and Weekends (N = 726) 
Newly Opened Subway lines (millions of riders) 
 

0.120 
[0.006] 

0 
[0] 

0.239 
[0.009] 

0.239*** 
[0.009] 

Existing Subway Lines (millions of riders) 
 

6.430 
[0.079] 

6.727 
[0.109] 

6.138 
[0.112] 

-0.589*** 
[0.156] 

Bus Passenger Volume (millions of riders) 13.032 
[0.071] 

13.829 
[0.056] 

12.248 
[0.115] 

-1.581*** 
[0.129] 

     
Traffic Congestion Index (TCI, Daily Average) 4.593 

[0.070] 
5.156 
[0.090] 

4.040 
[0.099] 

-1.116*** 
[0.134] 

Traffic Congestion Index (TCI, Morning Peak) 3.629 
[0.084] 

4.089 
[0.109] 

3.177 
[0.103] 

-0.912*** 
[0.150] 

Traffic Congestion Index (TCI, Evening Peak) 5.518 
[0.081] 

6.195 
[0.999] 

4.853 
[0.117] 

-1.342*** 
[0.154] 

     
Holiday (0,1) 0.101 

[0.012] 
0.039 
[0.011] 

0.161 
[0.021] 

0.122*** 
[0.024] 

Extreme Weather (0,1) 0.044 
[0.008] 

0.044 
[0.019] 

0.044 
[0.011] 

-0.001 
[0.015] 

Percentage of cars not banned (0, 100) 80.0 
[0.150] 

80.0 
[0.207] 

79.9 
[0.207] 

-0.100 
[0.300] 

Excludes Holidays and Weekends (N = 475) 
Newly Opened Subway lines (millions of riders) 
 

0.117 
[0.008] 

0 
[0] 

0.254 
[0.011] 

0.254*** 
[0.011] 

Existing Subway Lines (millions of riders) 
 

6.663 
[0.092] 

7.138 
[0.129] 

6.963 
[0.130] 

-0.176 
[0.184] 

Bus Passenger Volume (millions of riders) 13.403 
[0.064] 

14.373 
[0.039] 

13.248 
[0.093] 

-1.125*** 
[0.098] 

     
Traffic Congestion Index (TCI, Daily Average) 4.978 

[0.079] 
6.001 
[0.070] 

5.002 
[0.096] 

-0.999*** 
[0.117] 

Traffic Congestion Index (TCI, Morning Peak) 4.202 
[0.099] 

5.223 
[0.077] 

4.221 
[0.105] 

-1.003*** 
[0.129] 

Traffic Congestion Index (TCI, Evening Peak) 5.699 
[0.087] 

6.789 
[0.099] 

5.759 
[0.124] 

-1.031*** 
[0.157] 

     
Extreme Weather (0,1) 0.048 

[0.010] 
0.053 
[0.014] 

0.044 
[0.014] 

-0.009 
[0.020] 

Percentage of cars not banned (0, 100) 80.0 
[0.150] 

80.0 
[0.207] 

79.9 
[0.207] 

-0.100 
[0.300] 

Note: These summary statistics report average transportation usage levels 60 days before and 
after the 6 subway stations openings. Other variables in our research include dummies for 
weekdays and subway lines, respectively. For brevity, they are not reported here. Extreme 
weather includes heat waves, cold spells, rainstorms, and gale and snow, based on 
meteorological definitions at Baidu Encyclopedia (http://baike.baidu.com/). 

http://baike.baidu.com/
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Table A4: Variable descriptions for effects on air quality 
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Table A5: Conversion from pollutants concentration to API and AQI 

Air Pollution Index (API)  Pollutants 
value level  PM10 PM2.5 O3 CO NO2 SO2 
 
0-50 

 
Excellent 

 (µg/m3) 
0-50 

(µg/m3) (µg/m3) (mg/m3) (µg/m3) 
0-80 

(µg/m3) 
0-50 

50-100 Good  50-150    80-120 50-150 
100-200 Slightly polluted  150-350    120-280 150-800 
200-300 Moderately polluted  350-420    280-565 800-1600 
300-400 Severely polluted  420-500    565-750 1600-2100 
400-500 Severely polluted  500-600    750-940 2100-2620 
 
Air Quality Index (AQI) Pollutants 
 value level  PM10 PM2.5 O3 CO NO2 SO2 
    (µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3) (µg/m3) 
 0-50 Good  0-50 0-35 0-100 0-2 0-40 0-50 
 50-100 Moderate  50-150 35-75 100-160 2-4 40-80 50-150 
 101-150 Unhealthy for SG  150-250 75-115 160-215 4-14 80-180 150-475 
 151-200 Unhealthy  250-350 115-150 215-265 14-24 180-280 475-800 
 201-300 Very unhealthy  350-420 150-250 265-800 24-36 280-565 800-1600 
 >300 Hazardous  >420 >250 >800 >36 >565 2100-2620 
Note: During 2008-2012, the Chinese government adopts the Air Pollution Index (API) which 
takes into account three pollutants. Starting from 2013, the Chinese government replaces API 
with Air Quality Index (AQI) which considers PM2.5 separately from PM10 as a major pollutant, 
and also Ozone. 

Table A6: Summary statistics for effects on air quality 

Main variables Mean S.D. Min Max N 

(a) Air Pollution      

AP Iit 82.84 48.56 5.00 500.00 49103 
AQIit 124.64 80.02 8.00 500.00 54939 
(b) Subway Density      

Densityit (non-weighted) 2.48 3.58 0.01 16.26 297 
𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷�  (ridership-weighted) 0.19 0.30 0.00 1.34 297 
Nit × T reatedit 0.16 0.69 0.00 6.00 297 

(c) Weather variables      

Air temperature (oC) 12.97 11.39 -15.04 33.05 3533 
Wind speed (m/s) 1.97 1.58 0.02 10.21 3533 
Precipitation (mm) 1.97 8.82 0.00 262.64 3339 
Relative humidity (%) 54.64 20.20 6.97 97.83 3533 
Wind direction (cat.) 7.95 4.94 1.00 16.00 3533 
Note: The air quality panel summarizes the daily Air Pollution Index from 2008-2012 and Air 
Quality Index since 2013 from 27 air quality monitors in Beijing. The density panel summarizes 
the daily subway density measures at monitoring station level. The weather panel summarizes the 
daily, city-level weather conditions.  
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Table A7: Changes in air pollution before and after openings 

 ln(Air Pollution) 
 Before After Diff. Diff-in-Diff. 
Control 4.428 4.437 0.009  
 (0.008) (0.008) (0.011)  
Treated 4.483 4.535 0.052 0.043 
 (0.018) (0.022) (0.028) (0.031) 
 Residualized ln(Air Pollution) 
 Before After Diff. Diff-in-Diff. 
Control 0.005 -0.004 -0.009  
 (0.005) (0.005) (0.007)  
Treated 0.022 -0.033 -0.055 -0.046 
 (0.014) (0.015) (0.021) (0.022) 

Note: The top panel shows the sample mean of ln(Air P ollution) 60 days before and after each 
subway line opens. The bottom panel shows the sample means of residualized ln(Air P ollution) 
after after controlling for weather conditions, monitor fixed effects, time fixed effects: year, season, 
day of week and holiday, and monitor-specific time trends. The treatment group is defined as the 
monitoring stations within 2km of a new subway line while the control group is defined as the 
monitoring stations more than 20km away from the new subway line. The standard errors are in 
parentheses. 

Table A8: Beijing subway expansion and network density 

Opening Subway  N. of Stations  Standardized Density 
date line length  new total  non-weighted ridership-weighted 
(𝜏𝜏) (ℓ) (km)  (𝑁𝑁𝜏𝜏) (𝒩𝒩𝜏𝜏)  (𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝜏𝜏/𝜎𝜎) (𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆� 𝜏𝜏/𝜎𝜎�) 
Before 2008 1, 2, 5, 13, BT 140  93 93  0.27 0.27 
July 19, 2008 8, 10, AE 57  30 123  0.39 0.44 
Sep 28, 2009 4 28  24 147  0.45 0.52 
Dec 30, 2010 15, DX, CP, 

FS, YZ 
108  49 196  0.57 0.54 

Dec 31, 2011 9 36  19 215  0.62 0.56 
Dec 30, 2012 6 70  46 261  0.80 0.75 
May 5, 2013 14 (West) 14  9 270  0.82 0.76 
Dec 28, 2013 8 (Extension) 7  7 277  0.84 0.77 
Dec 28, 2014 7 62  42 319  0.93 0.81 
Dec 26, 2015 14 (East) 11  15 334  0.94 0.82 
Dec 31, 2016 16 20  11 345  0.96 0.82 
Note: The names of suburban subway lines are shown as abbreviation: Airport Express (AE), 
Batong  (BT), Daxing (DX), Changping (CP), Fangshan (FS) and Yizhuang (YZ). There were 93 
subway stations operating before our data period. Network density centered at an air pollution 
monitoring station is defined as the weighted sum of subway weighted by the squared inverse 
distance from the monitoring station to each subway station operating in the network as of the 
opening date. It is standardized by dividing its standard deviation. The ridership-weighted density 
is the reweight of the density by ridership of subway line. Standard deviations of the both 
densities are σ = 3.58 and σ = 29.77 respectively. All density measures are averaged across 
monitoring stations for each opening date. 
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Table A9: Parellel trend test for effects on air quality 

Note: Each column reports results from an OLS regression where the dependent variable is ln(Air 
P ollution) and the key explanatory variables are the treatment dummies (the interaction of each 
10 days within the 60-day time window around the opening dates and there is a new subway 
station within 2km from the monitoring station). The control group is the monitors outside 20km. 
The unit of observation is monitor-day. Column (4) relies on the staggered rollout. The weather 
controls include daily variables: temperature (C0), relative humidity (%), precipitation (mm), wind 
speed (km/h), sets of dummies for wind direction and the interactions with the wind speed , 
dummies for rain, snow, storm, fog. The time fixed effects include year, season, day-of-week, 
holiday-of-sample dummies. Parentheses contain standard errors clustered at the day level. 
Significance: *p < 0.1, **p < 0.05, and ***p < 0.01. 

  

  Dependent variable: ln(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝐷𝐷𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡) 
  (1) (2) (3) (4) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 − 60 ≤ 𝐷𝐷 < 𝜏𝜏 − 50) -0.080 -0.099 -0.067 -0.076 
  (0.061) (0.061) (0.062) (0.083) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 − 50 ≤ 𝐷𝐷 < 𝜏𝜏 − 40) -0.147*** -0.158*** -0.147*** -0.157*** 
  (0.043) (0.044) (0.045) (0.056) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 − 40 ≤ 𝐷𝐷 < 𝜏𝜏 − 30) -0.010 -0.022 -0.022 -0.034 
  (0.049) (0.051) (0.052) (0.058) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 − 30 ≤ 𝐷𝐷 < 𝜏𝜏 − 20) -0.065 -0.076 -0.088* -0.095 
  (0.050) (0.050) (0.052) (0.060) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 − 20 ≤ 𝐷𝐷 < 𝜏𝜏 − 10) -0.029 -0.044 -0.063 -0.064 
  (0.045) (0.047) (0.047) (0.054) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 ≤ 𝐷𝐷 < 𝜏𝜏 + 10) -0.090* -0.102** -0.062 -0.054 

  (0.048) (0.049) (0.045) (0.056) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 + 10 ≤ 𝐷𝐷 < 𝜏𝜏 + 20) 0.016 0.000 0.041 0.034 
  (0.053) (0.053) (0.051) (0.061) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 + 20 ≤ 𝐷𝐷 < 𝜏𝜏 + 30) -0.178*** -0.190*** -0.178*** -0.176*** 
  (0.052) (0.052) (0.052) (0.062) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 + 30 ≤ 𝐷𝐷 < 𝜏𝜏 + 40) -0.256*** -0.267*** -0.277*** -0.274*** 
  (0.053) (0.053) (0.054) (0.063) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 + 40 ≤ 𝐷𝐷 < 𝜏𝜏 + 50) -0.172*** -0.185*** -0.225*** -0.227*** 

  (0.057) (0.057) (0.056) (0.064) 
𝟏𝟏(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 2𝑘𝑘𝑡𝑡) × 𝟏𝟏(𝜏𝜏 + 50 ≤ 𝐷𝐷 < 𝜏𝜏 + 60) -0.044 -0.054 -0.112** -0.116* 

  (0.051) (0.051) (0.053) (0.063) 
Time Window (days) τ ± 60 τ ± 60 τ ± 60 τ ± 60 
Weather Controls Y Y Y Y 
Time FE  Y Y Y Y 
Monitor FE Y Y Y Y 
Monitor FE×Driving N Y Y Y 
Monitor FE×Trend N N Y Y 
Staggered Rollout N N N Y 
N  17231 17231 17231 17231 
R2  0.53 0.53 0.54 0.56 
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Table A10: Summary statistics of Beijing Household Travel Survey data 

Panel A: Travel Survey  
Variable Mean SD Min Max 
Household size 2.47 0.98 1 5 
Income (RMB ’000) 64.49 30.21 50 300 
# of workers 1.18 0.92 0 4 
House size (m2) 75.85 49.61 5 3,800 
House owner (=1) 0.69 0.46 0 1 
Having a car (=1) 0.29 0.45 0 1 
# of cars 0.31 0.51 0 3 
# of bikes 0.96 0.93 0 5 
# of ebikes 0.15 0.40 0 4 
# of motorcycles 0.03 0.18 0 3 
Panel B: Mortgage Data     
Year 2010 2 2008 2014 
Household Income (1,000s 2010 RMB) 153.7 81.0 15.1 717.1 
Borrower Age 33.0 5.6 23 55 
Real House Sale Price (1,000s 2010 RMB) 957.7 0.0 193.9 3,303.2 
Unit Size (square meters) 85.8 30.5 36.4 199.6 
Distance to Work (km) 10.5 7.4 0.1 53.3 
Distance to Subway from Home (km) 5.24 8.78 0.26 51.99 
Note: Panel A of the table reports summary statistics for 12,105 home-to-work or work-to-home 
trips in the travel survey data. Panel B reports summary statistics for the 13,865 homes that are 
used to construct the mortgage data sample. 

Table A11: Summary statistics of the mortgate data 

Panel A: Travel Survey  
Variable Mean SD Min Max 
Household size 2.47 0.98 1 5 
Income (RMB ’000) 64.49 30.21 50 300 
# of workers 1.18 0.92 0 4 
House size (m2) 75.85 49.61 5 3,800 
House owner (=1) 0.69 0.46 0 1 
Having a car (=1) 0.29 0.45 0 1 
# of cars 0.31 0.51 0 3 
# of bikes 0.96 0.93 0 5 
# of ebikes 0.15 0.40 0 4 
# of motorcycles 0.03 0.18 0 3 
Panel B: Mortgage Data     
Year 2010 2 2008 2014 
Household Income (1,000s 2010 RMB) 153.7 81.0 15.1 717.1 
Borrower Age 33.0 5.6 23 55 
Real House Sale Price (1,000s 2010 RMB) 957.7 0.0 193.9 3,303.2 
Unit Size (square meters) 85.8 30.5 36.4 199.6 
Distance to Work (km) 10.5 7.4 0.1 53.3 
Distance to Subway from Home (km) 5.24 8.78 0.26 51.99 
Note: Panel A of the table reports summary statistics for 12,105 home-to-work or work-to-home 
trips in the travel survey data. Panel B reports summary statistics for the 13,865 homes that are 
used to construct the mortgage data sample.  
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Table A12: R-D results – extended sample period without openings 4 and 5 

Dependent Variable Ln(All 
SPV) 

Ln(Existi
ng SPV) 

Ln(BPV) TCI 
(all) 

TCI 
(morning) 

TCI 
(evening) 

30 Days Around Opening (N = 157) 
Subway Open  0.084*** -0.014 -0.025** -0.502 -0.320 -0.685 
 [0.023] [0.025] [0.008] [0.502] [0.514] [0.665] 
R2 0.974 0.981 0.862 0.576 0.728 0.515 
60 Days Around Opening (N = 
317) 

     

Subway Open 0.138*** 0.030 -0.019 -0.721* -1.240** -0.207 
 [0.015] [0.019] [0.013] [0.349] [0.445] [0.345] 
R2 0.826 0.939 0.720 0.598 0.565 0.504 
90 Days Around Opening (N = 473) 
Subway Open 0.067*** -0.047** 0.030 -1.082*** -1.569*** -0.597*** 
 [0.020] [0.016] [0.068] [0.137] [0.224] [0.133] 
R2 0.860 0.942 0.120 0.514 0.460 0.461 
120 Days Around Opening (N = 630) 
Subway Open 0.050*** -0.092*** -0.068** -0.982*** -1.249*** -0.718*** 
 [0.017] [0.016] [0.031] [0.132] [0.199] [0.122] 
R2 0.845 0.948 0.085 0.463 0.412 0.450 
150 Days Around Opening (N = 
791) 

     

Subway Open 0.085*** -0.063*** -0.074*** -0.828*** -1.177*** -0.482*** 
 [0.013] [0.011] [0.013] [0.133] [0.185] [0.146] 
R2 0.823 0.941 0.099 0.367 0.382 0.373 
180 Days Around Opening (N = 
941) 

     

Subway Open 0.080*** -0.059*** -0.094*** -0.906*** -1.329*** -0.487*** 
 [0.015] [0.008] [0.012] [0.137] [0.189] [0.157] 
R2 0.814 0.948 0.105 0.371 0.375 0.372 

Note: This table reports results of regressions of specification 4 from table 1. All regressions 
include a third-order polynomial in the predictor. Holidays and weekends are excluded from these 
models. Regressions with “covariates” contain weekday dummies, dummies for which license 
plates are excluded from Beijing roads that day, extreme weather dummies, and dummies for 
subway line. All standard errors are clustered using a dummy for the interaction of the weekday 
and which license plates are excluded that day. 

Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table A13: Regression discontinuity-based results – alternative specifications 
checks 

 (1) (2) (3) (4) (5) (6) 
 Ln(All 

SPV) 
Ln(Existing 
SPV) 

Ln(BPV) TCI 
(all) 

TCI 
(morning) 

TCI 
(evening) 

Excluding Days around Holidays 
(All subway openings) 

      

Subway Open 0.133*** 0.041*** -0.025*** -0.722*** -1.242*** -0.218 
(N = 420) [0.010] [0.003] [0.006] [0.153] [0.275] [0.149] 
R2 0.974 0.988 0.799 0.670 0.601 0.562 
No Coinciding Travel Policies 
(Drops Openings 2 and 5) 

      

Subway Open 0.135*** 0.033* -0.017 -0.664* -1.122** -0.211 
(N = 316) [0.016] [0.018] [0.010] [0.337] [0.403] [0.357] 
R2 0.840 0.939 0.732 0.641 0.598 0.535 
Excludes Opening 1       
Subway Open 0.043 0.011 -0.030* -0.498 -0.513 -0.493* 
(N = 394) [0.025] [0.022] [0.015] [0.286] [0.344] [0.268] 
R2 0.616 0.764 0.600 0.668 0.612 0.618 
Excludes Opening 2       
Subway Open 0.129*** 0.030 -0.018* -0.659* -1.083** -0.239 
(N = 395) [0.015] [0.017] [0.009] [0.321] [0.384] [0.334] 
R2 0.847 0.941 0.718 0.614 0.582 0.516 
Excludes Opening 3       
Subway Open 0.131*** 0.036* -0.016* -0.722** -1.113*** -0.339 
(N = 395) [0.015] [0.017] [0.007] [0.316] [0.358] [0.316] 
R2 0.838 0.932 0.704 0.581 0.573 0.482 
Excludes Opening 4       
Subway Open 0.130*** 0.026 -0.020 -0.718* -1.193** -0.246 
(N = 396) [0.013] [0.018] [0.012] [0.327] [0.422] [0.315] 
R2 0.837 0.943 0.707 0.555 0.542 0.471 
Excludes Opening 5       
Subway Open 0.122*** 0.031* -0.022** -0.733** -1.155*** -0.320 
(N = 396) [0.014] [0.016] [0.010] [0.315] [0.378] [0.313] 
R2 0.823 0.924 0.680 0.602 0.576 0.502 
Excludes Opening 6       
Subway Open 0.135*** 0.031** -0.031*** -0.946** -1.497*** -0.405 
(N = 399) [0.020] [0.014] [0.005] [0.323] [0.360] [0.366] 
R2 0.884 0.917 0.518 0.576 0.561 0.467 
Includes Week FE       
Subway Open 0.075** -0.025 -0.039*** -1.207** -1.084** -1.333* 
(N = 475) [0.035] [0.023] [0.010] [0.530] [0.479] [0.678] 
R2 0.866 0.944 0.763 0.704 0.715 0.636 

Note: This table reports results of regressions of equation (1) when the dependent variable is bus 
passenger volume (BPV), subway passenger volume (SPV), or the traffic congestion index (TCI). 
The reported coefficient in each cell is the coefficient on “Subway Open,” a dummy variable 
indicating whether the new subway line had opened. All regressions are based on model 
specification 4 of table 1, and include a third order polynomial. All standard errors are clustered 
using a dummy for the interaction of the weekday and which license plates are excluded that day.  
Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.  



52 

Table A14: R-D results – sample window tests 

Dependent Variable Ln(All 
SPV) 

Ln(Existi
ng SPV) 

Ln(BPV) TCI 
(all) 

TCI 
(morning) 

TCI 
(evening) 

30 Days Around Opening (N = 236) 
Subway Open  0.073*** -0.008 -0.028*** -0.733 -0.445 -1.034* 
 [0.018] [0.019] [0.006] [0.432] [0.464] [0.525] 
R2 0.969 0.982 0.837 0.512 0.654 0.464 
45 Days Around 
Opening (N = 355) 

      

Subway Open 0.130*** 0.045* 0.004 -0.646* -0.723 -0.578 
 [0.021] [0.023] [0.011] [0.354] [0.413] [0.453] 
R2 0.920 0.942 0.749 0.531 0.580 0.434 
60 Days Around Opening (N = 475) 
Subway Open 0.117*** 0.028* -0.023** -0.728*** -1.120*** -0.343 
 [0.013] [0.016] [0.009] [0.302] [0.362] [0.295] 
R2 0.830 0.927 0.668 0.578 0.562 0.485 
Note: This table reports results of regressions of specification 4 from table 1. All regressions 
include a third-order polynomial in the predictor. Holidays and weekends are excluded from these 
models. Regressions with “covariates” contain weekday dummies, dummies for which license 
plates are excluded from Beijing roads that day, extreme weather dummies, and dummies for 
subway line. All standard errors are clustered using a dummy for the interaction of the weekday 
and which license plates are excluded that day. 

Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01. 

Table A15: Regression discontinuity robustness check – other order polynomials 

 Ln(All 
SPV) 

Ln(Existing 
SPV) 

Ln(BPV) TCI 
(all) 

TCI 
(morning) 

TCI 
(evening) 

1st order polynomial        
Subway Open 0.102*** 0.018 -0.029*** -0.799** -1.169*** -0.437 
 [0.014] [0.017] [0.010] [0.301] [0.360] [0.296] 
R2 0.792 0.911 0.594 0.427 0.509 0.318 
2nd order polynomial        
Subway Open 0.116*** 0.024 -0.023** -0.696** -1.100*** -0.300 
 [0.013] [0.017] [0.009] [0.289] [0.354] [0.279] 
R2 0.828 0.918 0.668 0.535 0.548 0.436 
3rd order polynomial (Baseline)       
Subway Open 0.117*** 0.028* -0.023** -0.728** -1.120*** -0.343 
 [0.013] [0.016] [0.009] [0.302] [0.362] [0.295] 
R2 0.830 0.927 0.668 0.578 0.562 0.485 
5th order polynomial       
Subway Open 0.113*** 0.023 -0.025*** -0.734** -1.112*** -0.364 
 [0.014] [0.015] [0.007] [0.305] [0.360] [0.307] 
R2 0.840 0.932 0.686 0.625 0.593 0.522 
7th order polynomial       
Subway Open 0.091*** 0.011 -0.029*** -0.888*** -1.120*** -0.665** 
 [0.011] [0.012] [0.004] [0.295] [0.350] [0.306] 
R2 0.846 0.934 0.719 0.652 0.625 0.562 
9th order polynomial       
Subway Open 0.091*** 0.011 -0.029*** -0.885*** -1.124*** -0.656* 
 [0.011] [0.012] [0.004] [0.297] [0.350] [0.307] 
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 Ln(All 
SPV) 

Ln(Existing 
SPV) 

Ln(BPV) TCI 
(all) 

TCI 
(morning) 

TCI 
(evening) 

R2 0.847 0.934 0.719 0.653 0.625 0.565 
11th order polynomial       
Subway Open 0.089*** 0.012 -0.034*** -0.817** -0.983** -0.663* 
 [0.013] [0.012] [0.005] [0.291] [0.334] [0.313] 
R2 0.847 0.934 0.721 0.654 0.630 0.565 

Note: This table reports results of regressions of equation (1) when the dependent variable is bus 
passenger volume (BPV), subway passenger volume (SPV), or the traffic congestion index (TCI). 
The reported coefficient in each cell is the coefficient on “Subway Open,” a dummy variable 
indicating whether the new subway line had opened. All specifications are similar to that of 
specification 4 of table 1. Standard errors are clustered using a dummy for the interaction of the 
weekday and which license plates are excluded that day. 

Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01. 

Table A16: OLS: The impact of subway network density on air pollution 

 Dependent variable: ln(Air Pollutionit) 
 (1) (2) (3) (4) 
Densityit 0.049*** -0.006*** -0.007*** -0.015*** 
 (0.001) (0.002) (0.002) (0.003) 
Temperature (C) 0.006*** 0.006*** 0.006*** 0.006*** 
 (0.001) (0.001) (0.001) (0.001) 
Relative humidity (%) 0.009*** 0.009*** 0.009*** 0.009*** 
 (0.001) (0.001) (0.001) (0.001) 
Rainfall/snow(mm) -0.002* -0.002* -0.002* -0.002* 
 (0.001) (0.001) (0.001) (0.001) 
Wind speed (m/s) -0.071** -0.071** -0.072** -0.071** 
 (0.031) (0.031) (0.031) (0.031) 
Constant 4.027*** 4.085*** 4.086*** 4.057*** 
 (0.073) (0.074) (0.079) (0.080) 
Monitor FE N Y Y Y 
Monitor FE Driving N N Y Y 
Monitor FE Trend N N N Y 
N 86758 86758 86758 86758 

Note: Each column reports results from an OLS regression where the dependent variable is ln(Air 
P ollution) and the key explanatory variable is the standardized subway network density 
Densityit/σ. Subway network density in a given location is defined as the weighted sum of subway 
stations weighted by the squared inverse distance from the location to each subway station in the 
network. The unit of observation is monitor-day. The weather controls include dummies for daily 
rain, snow, storm, fog. All columns have controlled for weather, wind directions, and a set of time 
fixed effects (Year, Season, Day of Week and holidays). Parentheses contain standard errors 
clustered at the day level. Significance: *p < 0.1, **p < 0.05, and ***p < 0.01. 
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Table A17: Marginal impact of subway expansion on air pollution 

Opening date Cumulative 
Standardized Density 

Marginal Increase in 
Density 

Marginal Reduction in 
air pollution (%) 

 non- ridership-  non- ridership-  non- ridership-  
 weighted weighted  weighted weighted  weighted weighted  
 (1) (2)  (3) (4)  (5) (6)  
Before 2008 0.230 0.201  - -  - -  

July 19, 2008 0.307 0.300  0.077 0.098  0.154 0.236  
Sep 28, 2009 0.365 0.366  0.057 0.066  0.115 0.157  
Dec 30, 2010 0.432 0.380  0.068 0.015  0.135 0.035  
Dec 31, 2011 0.459 0.391  0.027 0.010  0.054 0.025  
Dec 30, 2012 0.577 0.515  0.118 0.125  0.237 0.299  
May 5, 2013 0.595 0.532  0.017 0.016  0.035 0.039  
Dec 28, 2013 0.604 0.535  0.010 0.004  0.020 0.009  
Dec 28, 2014 0.697 0.575  0.093 0.040  0.185 0.095  
Dec 26, 2015 0.726 0.587  0.029 0.012  0.058 0.029  
Dec 31, 2016 0.735 0.589  0.009 0.002  0.018 0.005  

Total    0.505 0.387  1.009 0.930  

Note: Network density centered at a TAZ is defined as the weighted sum of subway weighted by 
the squared inverse distance from the centroid of the TAZ to each subway station operating in the 
network as of the opening date. It is standardized by dividing its standard deviation. The ridership-
weighted density is the reweight of the density by ridership of subway line. Standard deviations of 
the both densities are σ = 16.38 and σ = 19.62 respectively. All density measures are averaged 
over TAZs for each opening date. 
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Table A18: Difference-in-difference estimates with a fixed time window 

 Dependent variable: ln 

 Without Monitor FE  DID  
 (1) (2) (3)  (4) (5) (6)  
𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 × 𝟏𝟏(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑡𝑡) -0.105*** -0.105*** -0.105***  -0.105*** -0.105*** -0.105***  
  (0.026) (0.020) (0.013)  (0.019) (0.019) (0.018)  
Temperature (℃)  -0.011*** -0.010***  -0.010*** -0.010*** -0.012***  
   (0.002) (0.003)  (0.003) (0.003) (0.003)  
Relative humidity (%)  0.008*** 0.015***  0.015*** 0.015*** 0.015***  
   (0.001) (0.001)  (0.001) (0.001) (0.001)  
Precipitation (mm)  -0.007* -0.006*  -0.006* -0.007* -0.006  
   (0.004) (0.004)  (0.004) (0.004) (0.004)  
Wind speed (m/s)  -0.078* -0.205***  -0.104*** -0.106*** -0.103***  
   (0.042) (0.034)  (0.034) (0.034) (0.034)  
Constant 4.434*** 4.144*** 3.727***  3.846*** 3.854*** 3.765***  
  (0.018) (0.104) (0.140)  (0.141) (0.153) (0.153)  
Time Window (days) 𝜏𝜏 ± 60 𝜏𝜏 ± 60 𝜏𝜏 ± 60  𝜏𝜏 ± 60 𝜏𝜏 ± 60 𝜏𝜏 ± 60  
Weather Controls N Y Y  Y Y Y  
Wind Directions N Y Y  Y Y Y  
Wind Directions × Speed N Y Y  Y Y Y  
Year FE N N Y  Y Y Y  
Season FE N N Y  Y Y Y  
Day of Week FE N N Y  Y Y Y  
Monitor FE N N N  Y Y Y  
Monitor FE × Driving N N N  N Y Y  
Monitor FE × Trend N N N  N N Y  
N  18214 17231 17231  17231 17232 17233  
𝑅𝑅2  0.00 0.29 0.45  0.52 0.53 0.54  

Note: Each column reports results from an OLS regression where the dependent variable is ln(Air 
P ollution) and the key explanatory variable the interaction of treatment and post-opening. 
Columns (4) to (6) show the DID estimates with different sets of controls. The treatment group is 
defined as the monitoring stations within 2km of a new subway line while the control group is 
defined as the monitoring stations more than 20km away from the new subway line. The unit of 
observation is monitor-day. The weather controls include dummies for rain, snow, storm, fog. 
Parentheses contain standard errors clustered at the day level. Significance: *p < 0.1, **p < 0.05, 
and ***p < 0.01. 

  



56 

Table A19: Difference-in-difference estimates with varying time windows 

Dependent variable: ln AQI 
 (1) (2) (3) (4) (5) (6) 
Treatedit × 1(Postt) −0.046 

(0.038) 
−0.031 
(0.025) 

−0.029 
(0.020) 

−0.052*** 
(0.018) 

−0.057*** 
(0.016) 

−0.052*** 
(0.015) 

Time Window (days) τ ±10 τ ±20 τ ±30 τ ±40 τ ±50 τ ±60  
 (7) (8) (9) (10) (11) (12)  
−0.066***   −0.062***   −0.075***   −0.047***   −0.022 −0.015 
 (0.014) (0.013) (0.013) (0.016) (0.016) (0.016) 
Time Window (days) τ ±70 τ ±80 τ ±90 τ ±100 τ ±110 τ ±120 
 (13) (14) (15) (16) (17) (18) 
 −0.008 

(0.016) 
−0.007 
(0.015) 

−0.009 
(0.015) 

−0.009 
(0.015) 

−0.019 
(0.015) 

−0.023 
(0.015) 

Time Window (days) τ ±130 τ ±140 τ ±150 τ ±160 τ ±170 τ ±180 
Note: Each column reports results from an OLS regression using different time windows ((1) to 
(18): Opent = τ ±10, τ ±20, . . ., τ ±60, . . ., τ ±180-day) where the dependent variable is ln(Air P 
ollution) and the key explanatory variable is the treatment indicator (the interaction of the time 
window dummy and the treated group indicator), T reatedit = 1(P ostt) × 1(Distanceij ≤ 2km). The 
May 5th, 2013 opening is dropped from the sample to avoid overlapping events and to extend the 
time window. The treatment group is defined as the monitoring stations within 2km of a new 
subway line while the control group is defined as the monitoring stations more than 20km away 
from the new subway line. The unit of observation is monitor-day. All columns control for the daily 
weather variables: temperature (C0), relative humidity (%), precipitation (mm), wind speed (km/h), 
sets of dummies for wind direction and the interactions with the wind speed , dummies for rain, 
snow, storm, fog; the time fixed effects: day-of-week, quarter-of-year, year, holiday-of-sample 
dummies; spatial fixed effects: dummies for air pollution monitoring stations and the interactions 
with the time trend and driving restriction policy dummies. Parentheses contain standard errors 
clustered at date level. Significance: *p < 0.1, **p < 0.05, and ***p < 0.01. 

Table A20: Difference-in-difference estimates with continuous time measurement 

 Dependent Variable: ln AQI 
 (1) (2) (3) (4) 
𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 × 𝟏𝟏(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑡𝑡) 0.075** 0.151*** -0.001 0.110*** 
 (0.036) (0.056) (0.026) (0.041) 
𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 × 𝟏𝟏(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑡𝑡) × 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑖𝑖𝑡𝑡 -0.004*** -0.012*** -0.000 -0.006*** 
 (0.001) (0.004) (0.000) (0.002) 

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝑖𝑖𝑡𝑡 × 𝟏𝟏(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑡𝑡) × 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑖𝑖𝑡𝑡2 /100  0.013*  0.005*** 
 (0.007)  (0.001) 

Time Window (days) 𝜏𝜏 ± 60 𝜏𝜏 ± 60 𝜏𝜏 ± 60 𝜏𝜏 ± 60 
N 15467 15467 30933 30933 
𝑅𝑅2 0.56 0.56 0.47 0.47 
Note: Each column reports results from an OLS regression where the dependent variable is ln(Air 
P ollution). The treatment group is defined as the monitoring stations within 2km of a new subway 
line while the control group is defined as the monitoring stations more than 20km away from the 
new subway line. The unit of observation is station-day. All columns control for the daily weather 
variables: temperature (C0), relative humidity (%), precipitation (mm), wind speed (km/h), sets of 
dummies for wind direction and the interactions with the wind speed , dummies for rain, snow, 
storm, fog; the time fixed effects: day-of-week, quarter-of-year, year, holiday-of-sample dummies; 
spatial fixed effects: dummies for air pollution monitoring stations and the interactions with the 
time trend and driving restriction policy dummies. Parentheses contain standard errors clustered 
at date level. Significance: *p < 0.1, **p < 0.05, and ***p < 0.01. 
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Table A21: Difference-in-differences estimates with heterogenous effect 

 
Note: Each column reports results from an OLS regression where the dependent variable is ln(Air 
P ollution) and the key explanatory variable is the interaction of treatment, post-opening, and 
number of new subway stations within 2km of each monitor. The control group is defined as the 
monitoring stations more than 20km away from the new subway line. The unit of observation is 
station-day. Column (4) relies on the staggered rollout. The weather controls include dummies for 
rain, snow, storm, fog. Parentheses contain standard errors clustered at date level. Significance: 
*p < 0.1, **p < 0.05, and ***p < 0.01. 
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Table A22: Estimates of travel mode choice 

(1) (2) (3) (4) 

Panel A: Mode Choice Estimation MLE) 
Time (hours) -0.728*** -0.135*** -0.133*** -0.139*** 
Cost/Income 0.227*** -0.196*** -0.271*** -0.243*** 
Case variables     
ASC Y Y Y Y 
Distance N Y Y Y 
Age N N Y Y 
Male N N Y Y 
Schooling N N Y Y 
HH size N N N Y 
# of cars N N N Y 
# of workers N N N Y 
N of Trips 12105 12105 12105 12105 
Pseudo R2 0.059 0.141 0.180 0.199 
log ℓ -15352.1 -14014.5 -13375.2 -13075.5 
Panel B: Implied VOT 
Income (RMB/year) Wage (RMB/h) VOT (RMB/h) Wage ($/h) VOT ($/h) 
25000 12.50 7.12 1.98 1.13 
75000 37.50 21.38 5.93 3.38 
125000 62.50 35.62 9.89 5.64 
175000 87.50 49.88 13.84 7.89 
225000 112.50 64.12 17.80 10.15 
275000 137.50 78.38 21.76 12.40 
325000 162.50 92.62 25.71 14.66 
Average 37.05 21.12 5.86 3.34 
Note: Table reports estimates from maximum likelihood estimation of multinomial logit model of 
mode choice between driving, walking, biking, subway and bus. Panel A reports coefficients and 
specifications, where alternative-specific constants are included but not reported. Panel B reports 
the implied distribution of wages, value of time (VOT) in RMB and USD. Sample is restricted to 
work-home or home-work trips, at least one car and one bike, age between 16 and 60, within the 

6th Ring Road. The value of time (𝑉𝑉𝑆𝑆𝑇𝑇) is calculated as:𝑉𝑉𝑆𝑆𝑇𝑇 =
𝜕𝜕𝑡𝑡𝑖𝑖

𝜕𝜕𝑡𝑡𝑖𝑖𝑗𝑗𝑡𝑡𝑖𝑖
𝜕𝜕𝑡𝑡𝑖𝑖

𝜕𝜕𝑐𝑐𝜕𝜕𝑡𝑡𝑡𝑡𝑖𝑖

= 𝛾𝛾�𝑡𝑡𝑖𝑖𝑗𝑗𝑡𝑡
𝛾𝛾�𝑐𝑐𝜕𝜕𝑡𝑡𝑡𝑡

∙ 𝐼𝐼𝑆𝑆𝐷𝐷𝑃𝑃𝑡𝑡𝑆𝑆𝑖𝑖  =  0.57 ∙

𝐼𝐼𝑆𝑆𝐷𝐷𝑃𝑃𝑡𝑡𝑆𝑆𝑖𝑖. The omitted fixed effect in the model estimated is for walking. 
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Table A23: Estimates from location choice model 

 
Note: Table reports estimates from a two-stage estimate of demand for housing. The first stage 
estimates are presented in Panel A, where “mode choice logsum” is EVj constructed using data 
for households and estimates from the mode choice model from Table 4.2. First stage housing 
type fixed effects are estimated through the contraction mapping in this first stage and are used 
as the dependent variable in the second stage reported in Panel B. Panel B estimates are based 
on housing type attributes and are estimated by OLS and IV, where the instruments are the mean 
of housing attributes other than price within 1-5km rings from the housing types. 
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Table A24: Simulation results: commuting mode only 

(1) (2) (3) (4) 
Baseline No Policy Driving Restriction Congestion Charge Subway Expansion 
(in levels) (change rel. to I) (change rel. to I) (change rel. to I) 
Household Income Relative to Median 
Below Above Below Above Below Above Below Above 
 

Mode Use Share in Percentage Points 
Drive 0.07 0.38 -0.01 -0.08 -0.02 -0.01 -0.01 -0.02 
Subway 0.03 0.12 0.00 0.03 0.00 0.01 0.02 0.07 
Bus 0.32 0.15 0.01 0.04 0.01 0.00 0.00 -0.02 
Bike 0.17 0.10 0.00 0.00 0.01 0.00 -0.01 -0.01 
Walk 0.41 0.25 0.00 0.01 0.00 0.00 0.00 -0.02 
Speed (kph) 57.8 57.6 2.3 2.4 1.6 1.8 0.9 0.8 
Note: Table reports results from three counterfactual policy simulations based on 2014 
observations relative to simulated baseline no-policy equilibrium with 2008 subway network 
(column I): driving restriction, 20 RMB congestion charge and expanding the subway from 2008 to 
2014 network. “Change in Mode Use Share” reports how the share of commuters in each income 
quartile changed their commuting choice (0.03 means that the share using that mode increased 
by 3 basis points) 

Table A25: Simulation results: commuting & location choice 

(1) (2) (3) (4) 
Baseline No Policy Driving Restriction Congestion Charge Subway Expansion 
(in levels) (change rel. to I) (change rel. to I) (change rel. to I) 

Household Income Relative to Median 
Below Above Below Above Below Above Below Above 

 
Mode Use Share in Percentage Points 

Drive 0.08 0.37 -0.04 -0.15 -0.04 -0.07 -0.01 -0.07 
Subway 0.03 0.11 0.02 0.07 0.01 0.05 0.02 0.12 
Bus 0.32 0.15 0.02 0.03 0.01 0.02 -0.01 -0.02 
Bike 0.17 0.11 0.01 0.01 0.02 0.00 0.00 -0.01 
Walk 0.40 0.26 0.01 0.02 0.00 0.00 0.00 -0.02 

Dist. to Subway in KM 1.89 4.21 0.08 -0.03 -0.03 0.10 0.08 -1.11 

Dist. to Work in KM 10.1 9.40 1.94 -1.01 -2.9 2.5 1.09 -2.0 
Speed in KPH 57.8 57.6 3.5 3.5 2.8 2.9 1.8 1.7 

Note: Table reports results from three counterfactual policy simulations based on 2014 
observations relative to simulated baseline no-policy equilibrium with 2008 subway network 
(column I): driving restriction, 20 RMB congestion charge and expanding the subway from 2008 to 
2014 network. “Change in Mode Use Share” reports how the share of commuters in each income 
quartile changed their commuting choice (0.03 means that the share using that mode increased 
by 3 basis points. 
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